• Title/Summary/Keyword: AI (artificial intelligence)

Search Result 1,999, Processing Time 0.04 seconds

CoNSIST : Consist of New methodologies on AASIST, leveraging Squeeze-and-Excitation, Positional Encoding, and Re-formulated HS-GAL

  • Jae-Hoon Ha;Joo-Won Mun;Sang-Yup Lee
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.692-695
    • /
    • 2024
  • With the recent advancements in artificial intelligence (AI), the performance of deep learning-based audio deepfake technology has significantly improved. This technology has been exploited for criminal activities, leading to various cases of victimization. To prevent such illicit outcomes, this paper proposes a deep learning-based audio deepfake detection model. In this study, we propose CoNSIST, an improved audio deepfake detection model, which incorporates three additional components into the graph-based end-to-end model AASIST: (i) Squeeze and Excitation, (ii) Positional Encoding, and (iii) Reformulated HS-GAL, This incorporation is expected to enable more effective feature extraction, elimination of unnecessary operations, and consideration of more diverse information, thereby improving the performance of the original AASIST. The results of multiple experiments indicate that CoNSIST has enhanced the performance of audio deepfake detection compared to existing models.

A Quantitative Analysis on Machine Learning and Smart Farm with Bibliographic Data from 2013 to 2023

  • Yong Sauk Hau
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.388-393
    • /
    • 2024
  • The convergence of machine learning and smart farm is becoming more and more important. The purpose of this research is to quantitatively analyze machine learning and smart farm with bibliographic data from 2013 to 2023. This study analyzed the 251 articles, filtered from the Web of Science, with regard to the article publication trend, the article citation trend, the top 10 research area, and the top 10 keywords representing the articles. The quantitative analysis results reveal the four points: First, the number of article publications in machine learning and smart farm continued growing from 2016. Second, the article citations in machine learning and smart farm drastically increased since 2018. Third, Computer Science, Engineering, Agriculture, Telecommunications, Chemistry, Environmental Sciences Ecology, Material Science, Instruments Instrumentation, Science Technology Other Topics, and Physics are top 10 research areas. Fourth, it is 'machine learning', 'smart farming', 'internet of things', 'precision agriculture', 'deep learning', 'agriculture', 'big data', 'machine', 'smart' and 'smart agriculture' that are the top 10 keywords composing authors' keywords in the articles in machine learning and smart farm from 2013 to 2023.

Realtime Analysis of Sasang Constitution Types from Facial Features Using Computer Vision and Machine Learning

  • Abdullah;Shah Mahsoom Ali;Hee-Cheol Kim
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.3
    • /
    • pp.256-266
    • /
    • 2024
  • Sasang constitutional medicine (SCM) is one of the best traditional therapeutic approaches used in Korea. SCM prioritizes personalized treatment that considers the unique constitution of an individual and encompasses their physical characteristics, personality traits, and susceptibility to specific diseases. Facial features are essential for diagnosing Sasang constitutional types (SCTs). This study aimed to develop a real-time artificial intelligence-based model for diagnosing SCTs using facial images, building an SCTs prediction model based on a machine learning method. Facial features from all images were extracted to develop this model using feature engineering and machine learning techniques. The fusion of these features was used to train the AI model. We used four machine learning algorithms, namely, random forest (RF), multilayer perceptron (MLP), gradient boosting machine (GBM), and extreme gradient boosting (XGB), to investigate SCTs. The GBM outperformed all the other models. The highest accuracy achieved in the experiment was 81%, indicating the robustness of the proposed model and suitability for real-time applications.

A Study on ANN/RNN-based Photovoltaic Generation Forecasting (ANN/RNN 기반 태양광 발전량 예측에 관한 연구)

  • Su Wung Baek;Sung Gi Kwon;Chang Heon Kim;Gye Choon Park
    • Current Photovoltaic Research
    • /
    • v.12 no.3
    • /
    • pp.49-54
    • /
    • 2024
  • This study proposed a forecasting model that combines ANNs and RNNs to address the intermittency and fluidity of solar power generation. Four prediction models were trained separately based on sky conditions provided by the Korea Meteorological Administration, and insolation was estimated using the ASHRAE Clear-Sky model. The proposed model showed an error rate of 6.5-7.7% based on NMAE, which meets the requirements of power generation prediction. As a result, this study can improve the accuracy of solar power generation forecasting, which can contribute to the stability of power operation and the profitability of power operators.

Design and Development of Modular Replaceable AI Server for Image Deep Learning in Social Robots on Edge Devices (엣지 디바이스인 소셜 로봇에서의 영상 딥러닝을 위한 모듈 교체형 인공지능 서버 설계 및 개발)

  • Kang, A-Reum;Oh, Hyun-Jeong;Kim, Do-Yun;Jeong, Gu-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.470-476
    • /
    • 2020
  • In this paper, we present the design of modular replaceable AI server for image deep learning that separates the server from the Edge Device so as to drive the AI block and the method of data transmission and reception. The modular replaceable AI server for image deep learning can reduce the dependency between social robots and edge devices where the robot's platform will be operated to improve drive stability. When a user requests a function from an AI server for interaction with a social robot, modular functions can be used to return only the results. Modular functions in AI servers can be easily maintained and changed by each module by the server manager. Compared to existing server systems, modular replaceable AI servers produce more efficient performance in terms of server maintenance and scale differences in the programs performed. Through this, more diverse image deep learning can be included in robot scenarios that allow human-robot interaction, and more efficient performance can be achieved when applied to AI servers for image deep learning in addition to robot platforms.

A Study on the Intention to Use of the AI-related Educational Content Recommendation System in the University Library: Focusing on the Perceptions of University Students and Librarians (대학도서관 인공지능 관련 교육콘텐츠 추천 시스템 사용의도에 관한 연구 - 대학생과 사서의 인식을 중심으로 -)

  • Kim, Seonghun;Park, Sion;Parkk, Jiwon;Oh, Youjin
    • Journal of Korean Library and Information Science Society
    • /
    • v.53 no.1
    • /
    • pp.231-263
    • /
    • 2022
  • The understanding and capability to utilize artificial intelligence (AI) incorporated technology has become a required basic skillset for the people living in today's information age, and various members of the university have also increasingly become aware of the need for AI education. Amidst such shifting societal demands, both domestic and international university libraries have recognized the users' need for educational content centered on AI, but a user-centered service that aims to provide personalized recommendations of digital AI educational content is yet to become available. It is critical while the demand for AI education amongst university students is progressively growing that university libraries acquire a clear understanding of user intention towards an AI educational content recommender system and the potential factors contributing to its success. This study intended to ascertain the factors affecting acceptance of such system, using the Extended Technology Acceptance Model with added variables - innovativeness, self-efficacy, social influence, system quality and task-technology fit - in addition to perceived usefulness, perceived ease of use, and intention to use. Quantitative research was conducted via online research surveys for university students, and quantitative research was conducted through written interviews of university librarians. Results show that all groups, regardless of gender, year, or major, have the intention to use the AI-related Educational Content Recommendation System, with the task suitability factor being the most dominant variant to affect use intention. University librarians have also expressed agreement about the necessity of the recommendation system, and presented budget and content quality issues as realistic restrictions of the aforementioned system.

Development and Validation of a Korean Generative AI Literacy Scale (한국형 생성 인공지능 리터러시 척도 개발 및 타당화)

  • Hwan-Ho Noh;Hyeonjeong Kim;Minjin Kim
    • Knowledge Management Research
    • /
    • v.25 no.3
    • /
    • pp.145-171
    • /
    • 2024
  • Literacy initially referred to the ability to read and understand written documents and processed information. With the advancement of digital technology, the scope of literacy expanded to include the access and use of digital information, evolving into the concept of digital literacy. The application and purpose of digital literacy vary across different fields, leading to the use of various terminologies. This study focuses on generative artificial intelligence (AI), which is gaining increasing importance in the AI era, to assess users' literacy levels. The research aimed to extend the concept of literacy proposed in previous studies and develop a tool suitable for Korean users. Through exploratory factor analysis, we identified that generative AI literacy consists of four factors: AI utilization ability, critical evaluation, ethical use, and creative application. Subsequently, confirmatory factor analysis validated the statistical appropriateness of the model structure composed of these four factors. Additionally, correlation analyses between the newly developed literacy tool and existing AI literacy scales and AI service evaluation tools revealed significant relationships, confirming the validity of the tool. Finally, the implications, limitations, and directions for future research are discussed.

KOMUChat: Korean Online Community Dialogue Dataset for AI Learning (KOMUChat : 인공지능 학습을 위한 온라인 커뮤니티 대화 데이터셋 연구)

  • YongSang Yoo;MinHwa Jung;SeungMin Lee;Min Song
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.219-240
    • /
    • 2023
  • Conversational AI which allows users to interact with satisfaction is a long-standing research topic. To develop conversational AI, it is necessary to build training data that reflects real conversations between people, but current Korean datasets are not in question-answer format or use honorifics, making it difficult for users to feel closeness. In this paper, we propose a conversation dataset (KOMUChat) consisting of 30,767 question-answer sentence pairs collected from online communities. The question-answer pairs were collected from post titles and first comments of love and relationship counsel boards used by men and women. In addition, we removed abuse records through automatic and manual cleansing to build high quality dataset. To verify the validity of KOMUChat, we compared and analyzed the result of generative language model learning KOMUChat and benchmark dataset. The results showed that our dataset outperformed the benchmark dataset in terms of answer appropriateness, user satisfaction, and fulfillment of conversational AI goals. The dataset is the largest open-source single turn text data presented so far and it has the significance of building a more friendly Korean dataset by reflecting the text styles of the online community.

A Study on the Decision Factors for AI-based SaMD Adoption Using Delphi Surveys and AHP Analysis (델파이 조사와 AHP 분석을 활용한 인공지능 기반 SaMD 도입 의사결정 요인에 관한 연구)

  • Byung-Oh Woo;Jay In Oh
    • The Journal of Bigdata
    • /
    • v.8 no.1
    • /
    • pp.111-129
    • /
    • 2023
  • With the diffusion of digital innovation, the adoption of innovative medical technologies based on artificial intelligence is increasing in the medical field. This is driving the launch and adoption of AI-based SaMD(Software as a Medical Device), but there is a lack of research on the factors that influence the adoption of SaMD by medical institutions. The purpose of this study is to identify key factors that influence medical institutions' decisions to adopt AI-based SaMDs, and to analyze the weights and priorities of these factors. For this purpose, we conducted Delphi surveys based on the results of literature studies on technology acceptance models in healthcare industry, medical AI and SaMD, and developed a research model by combining HOTE(Human, Organization, Technology and Environment) framework and HABIO(Holistic Approach {Business, Information, Organizational}) framework. Based on the research model with 5 main criteria and 22 sub-criteria, we conducted an AHP(Analytical Hierarchy Process) analysis among the experts from domestic medical institutions and SaMD providers to empirically analyze SaMD adoption factors. The results of this study showed that the priority of the main criteria for determining the adoption of AI-based SaMD was in the order of technical factors, economic factors, human factors, organizational factors, and environmental factors. The priority of sub-criteria was in the order of reliability, cost reduction, medical staff's acceptance, safety, top management's support, security, and licensing & regulatory levels. Specifically, technical factors such as reliability, safety, and security were found to be the most important factors for SaMD adoption. In addition, the comparisons and analyses of the weights and priorities of each group showed that the weights and priorities of SaMD adoption factors varied by type of institution, type of medical institution, and type of job in the medical institution.

An Empirical Study on the Prediction of Future New Defense Technologies in Artificial Intelligence (인공지능 분야 국방 미래 신기술 예측에 관한 실증연구)

  • Ahn, Jin-Woo;Noh, Sang-Woo;Kim, Tae-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.458-465
    • /
    • 2020
  • Technological advances in artificial intelligence are affecting many industries, such as telecommunications, logistics, security, and healthcare, and research and development related to economic, efficiency, linkage with commercial technologies are the current focus. Predicting the changes in the future battlefield environment and ways of conducting war from a strategic point of view, as well as designing/planning the direction of military development for a leading response is not only a basic element to prepare for comprehensive future threats but also an indispensable factor that can produce an optimal effect over a limited budget/time. From this perspective, this study was conducted as part of a technology-driven plan to discover potential future technologies with high potential for use in the defense field and apply them to R&D. In this study, based on research data collected in a defense future technology investigation, the future new technology that requires further research was predicted by considering the redundancy with existing defense research projects and the feasibility of technology. In addition, an empirical study was conducted to verify the significance between the future new defense technology and the evaluation indicators in the AI field.