References
- 김세나, 표두미, 이지선, 이준기, 신강현, 김경일 (2015). 한국판 조절초점 척도 타당화 연구. 한국심리학회지: 사회 및 성격, 29(3), 85-110.
- 류미영, 한선관 (2023). 인공지능 리터러시 측정을 위한 검사 지표 개발. 한국컴퓨터정보학회논문지, 28(7), 39-46.
- 이경주, 김은영 (2020). 플랫폼 서비스 혁신에 있어 인공지능(AI) 의 역할과 효과에 관한 연구: 카카오 그룹의 인공지능 활용 사례 연구. 지식경영연구, 21(1), 175-195.
- 이병관, 윤태웅, 노환호, 임혜빈 (2019). 한국형 사회적 배제 경험 척도 개발 및 타당화 연구. 한국심리학회지: 소비자.광고, 20(1), 127-152.
- 지유첸, 백지연, 조현정, 이지연 (2022). 사무직 직원의 디지털 리터러시와 무형식 학습의 관계에서 인센티브의 조절효과에 대한 연구: 중국의 사례를 중심으로. 지식경영연구, 23(3), 173-192.
- 최숙영 (2022). AI 리터러시 프레임워크에 대한 연구. 컴퓨터교육학회 논문지, 25(5), 73-84.
- 탁진국 (2007). 심리검사 -개발과 평가방법의 이해- (2판). 학지사.
- 황용석, 이선민, 김여립, 황현정 (2022). 디지털 역량 척도 개발 연구. 언론정보연구, 59(2), 5-48.
- Acharya, N., Sassenberg, A. M., & Soar, J. (2023). Effects of cognitive absorption on continuous use intention of AI-driven recommender systems in e-commerce. Foresight, 25(2), 194-208.
- Allcott, H., & Gentzkow, M. (2017). Social media and fake news in the 2016 election. Journal of Economic Perspectives, 31(2), 211-36.
- Ashok, M., Madan, R., Joha, A., & Sivarajah, U. (2022). Ethical framework for Artificial Intelligence and Digital technologies. International Journal of Information Management, 62, 102433.
- Aydin, M. (2021). Does the digital divide matter? Factors and conditions that promote ICT literacy. Telematics and Informatics, 58, 101536.
- Bago, B., Rand, D. G., & Pennycook, G. (2020). Fake news, fast and slow: Deliberation reduces belief in false (but not true) news headlines. Journal of Experimental Psychology: General, 149(8), 1608-1613.
- Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74-94.
- Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238-246.
- Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88(3), 588-606.
- Brashier, N. M., & Marsh, E. J. (2020). Judging truth. Annual Review of Psychology, 71, 499-515.
- Bronstein, M. V., Pennycook, G., Bear, A., Rand, D. G., & Cannon, T. D. (2019). Belief in fake news is associated with delusionality, dogmatism, religious fundamentalism, and reduced analytic thinking. Journal of Applied Research in Memory and Cognition, 8(1), 108-117.
- Brown, J. A. (1998). Media literacy perspectives. Journal of Communication, 48(1), 44-57.
- Buckingham, D., & Burn, A. (2007). Game literacy in theory and practice. Journal of Educational Multimedia and Hypermedia, 16(3), 323-349.
- Butler, J. (2012). Grappling with change: Web 2.0 and teacher education. In D. Polly, C. Mims, & K. A. Persichitte (Eds.), Developing technology-rich teacher education programs: Key issues (pp. 135-150). Hershey, PA: IGI Global.
- Cain, W. (2024). Prompting change: Exploring prompt engineering in large language model AI and its potential to transform education. TechTrends, 68(1), 47-57.
- Carolus, A., Koch, M. J., Straka, S., Latoschik, M. E., & Wienrich, C. (2023). MAILS-Meta AI literacy scale: Development and testing of an AI literacy questionnaire based on well-founded competency models and psychological change-and meta-competencies. Computers in Human Behavior: Artificial Humans, 1(2), 100014.
- Celik, I. (2023). Exploring the determinants of artificial intelligence (Ai) literacy: Digital divide, computational thinking, cognitive absorption. Telematics and Informatics, 83, 102026.
- Celik, I., Dindar, M., Muukkonen, H., & Jarvela, S. (2022). The promises and challenges of artificial intelligence for teachers: A systematic review of research. TechTrends, 66(4), 616-630.
- Chai, C. S., Wang, X., & Xu, C. (2020). An extended theory of planned behavior for the modelling of Chinese secondary school students' intention to learn artificial intelligence. Mathematics, 8(11), 2089.
- Chelli, M., Descamps, J., Lavoue, V., Trojani, C., Azar, M., Deckert, M., ... & Ruetsch-Chelli, C. (2024). Hallucination rates and reference accuracy of ChatGPT and bard for systematic reviews: Comparative analysis. Journal of Medical Internet Research, 26, e53164.
- Chen, D., Wu, J., & Wang, Y. (2011). Unpacking new media literacy. Journal on Systemics, Cybernetics and Informatics, 9, 84-88.
- Chi, O. H., Jia, S., Li, Y., & Gursoy, D. (2021). Developing a formative scale to measure consumers' trust toward interaction with artificially intelligent (AI) social robots in service delivery. Computers in Human Behavior, 118, 106700.
- Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96(1), 108-116.
- DeVellis, R. F. (2017). Scale development: Theory and applications (4th ed.). Thousand Oaks, CA: Sage.
- Duffy, B. (2018). The perils of perception. London, UK: Atlantic Books.
- Dunn, A. G., Shih, I., Ayre, J., & Spallek, H. (2023). What generative AI means for trust in health communications. Journal of Communication in Healthcare, 16(4), 385-388.
- Fui-Hoon Nah, F., Zheng, R., Cai, J., Siau, K., & Chen, L. (2023). Generative AI and ChatGPT: Applications, challenges, and AI-human collaboration. Journal of Information Technology Case and Application Research, 25(3), 277-304.
- Ghallab, M. (2019). Responsible AI: Requirements and challenges. AI Perspectives, 1(1), 1-7.
- Hagendorff, T. (2020). The ethics of AI ethics: An evaluation of guidelines. Minds and Machines, 30(1), 99-120.
- Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis (7th ed.). Englewood Cliffs: Prentice Hall.
- Hetzel, R. D. (1996). A primer on factor analysis with comments of practices and reporting. In B. Thompson (Ed.), Advances in Social Science Methodology, Vol. 4. (pp.175-206). Greenwich, CT: JAL.
- Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43, 115-135.
- Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55.
- Jang, S. M., & Kim, J. K. (2018). Third person effects of fake news: Fake news regulation and media literacy interventions. Computers in Human Behavior, 80, 295-302.
- Jiang, J., Karran, A. J., Coursaris, C. K., Leger, P. M., & Beringer, J. (2023). A situation awareness perspective on human-AI interaction: Tensions and opportunities. International Journal of Human-Computer Interaction, 39(9), 1789-1806.
- Kang, E. Y. N., Chen, D. R., & Chen, Y. Y. (2023). Associations between literacy and attitudes toward artificial intelligence-assisted medical consultations: The mediating role of perceived distrust and efficiency of artificial intelligence. Computers in Human Behavior, 139, 107529.
- Khasawneh, O. Y. (2018). Technophobia: Examining its hidden factors and defining it. Technology in Society, 54, 93-100.
- Kline, R. B. (2015). Principles and practice of structural equation modeling (4th ed.). New York: Guilford Press.
- Knoth, N., Tolzin, A., Janson, A., & Leimeister, J. M. (2024). AI literacy and its implications for prompt engineering strategies. Computers and Education: Artificial Intelligence, 6, 100225.
- Koc, M., & Barut, E. (2016). Development and validation of New Media Literacy Scale (NMLS) for university students. Computers in Human Behavior, 63, 834-843.
- Kong, S. C., Cheung, W. M. Y., & Zhang, G. (2022). Evaluating artificial intelligence literacy courses for fostering conceptual learning, literacy and empowerment in university students: Refocusing to conceptual building. Computers in Human Behavior Reports, 7, 100223.
- Kruger, J., & Dunning, D. (1999). Unskilled and unaware of it: How difficulties in recognizing one's own incompetence lead to inflated self-assessments. Journal of Personality and Social Psychology, 77(6), 1121-1134.
- Lin, P. Y., Chai, C. S., Jong, M. S. Y., Dai, Y., Guo, Y., & Qin, J. (2021). Modeling the structural relationship among primary students' motivation to learn artificial intelligence. Computers and Education: Artificial Intelligence, 2, 100006.
- Lin, T. B., Li, J. Y., Deng, F., & Lee, L. (2013). Understanding new media literacy: An explorative theoretical framework. Journal of Educational Technology & Society, 16(4), 160-170.
- List, A. (2019). Defining digital literacy development: An examination of pre-service teachers' beliefs. Computers & Education, 138, 146-158.
- Livingstone, S., & Helsper, E. (2010). Balancing opportunities and risks in teenagers'use of the internet: The role of online skills and internet self-efficacy. New Media & Society, 12(2), 309-329.
- Lo, L. S. (2023). The art and science of prompt engineering: A new literacy in the information age. Internet Reference Services Quarterly, 27(4), 203-210.
- Lund, B. D., Wang, T., Mannuru, N. R., Nie, B., Shimray, S., & Wang, Z. (2023). ChatGPT and a new academic reality: Artificial Intelligence-written research papers and the ethics of the large language models in scholarly publishing. Journal of the Association for Information Science and Technology, 74(5), 570-581.
- MacCallum, R. C., Widaman, K. F., Zhang, S., & Hong, S. (1999). Sample size in factor analysis. Psychological Methods, 4(1), 84-99.
- Namkoong, J. E., & Henderson, M. D. (2016). Wanting a bird's eye to understand why: Motivated abstraction and causal uncertainty. Journal of Experimental Social Psychology, 64, 57-71.
- Ng, D. T. K., Leung, J. K. L., Chu, S. K. W., & Qiao, M. S. (2021). Conceptualizing AI literacy: An exploratory review. Computers and Education: Artificial Intelligence, 2, 100041.
- Ng, D. T. K., Wu, W., Leung, J. K. L., Chiu, T. K. F., & Chu, S. K. W. (2024). Design and validation of the AI literacy questionnaire: The affective, behavioural, cognitive and ethical approach. British Journal of Educational Technology, 55(3), 1082-1104.
- Nimon, K., Zigarmi, D., Houson, D., Witt, D., & Diehl, J. (2011). The work cognition inventory: Initial evidence of construct validity. Human Resource Development Quarterly, 22(1), 7-35.
- Nunally, J. C. (1978). Psychometric Theory (2nd ed.). New York: McGraw-Hill.
- Orru, G., Piarulli, A., Conversano, C., & Gemignani, A. (2023). Human-like problem-solving abilities in large language models using ChatGPT. Frontiers in Artificial Intelligence, 6, 1199350.
- Pennycook, G., & Rand, D. G. (2019). Lazy, not biased: Susceptibility to partisan fake news is better explained by lack of reasoning than by motivated reasoning. Cognition, 188, 39-50.
- Pennycook, G., McPhetres, J., Zhang, Y., Lu, J. G., & Rand, D. G. (2020). Fighting COVID-19 misinformation on social media: Experimental evidence for a scalable accuracy-nudge intervention. Psychological Science, 31(7), 770-780.
- Perry, K. H. (2012). What is literacy?--A critical overview of sociocultural perspectives. Journal of Language and Literacy Education, 8(1), 50-71.
- Poria, S., Cambria, E., Bajpai, R., & Hussain, A. (2017). A review of affective computing: From unimodal analysis to multimodal fusion. Information Fusion, 37, 98-125.
- R Development Core Team. (2012). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
- Rajam, V., Reddy, A. B., & Banerjee, S. (2021). Explaining caste-based digital divide in India. Telematics and Informatics, 65, 101719.
- Revelle, W. (2018). Psych: Procedures for psychological, psychometric, and personality research. R Package Version, 1(10).
- Ritzer, G., & Jurgenson, N. (2010). Production, consumption, prosumption: The nature of capitalism in the age of the digital 'prosumer'. Journal of Consumer Culture, 10(1), 13-36.
- Robinson, S. C. (2020). Trust, transparency, and openness: How inclusion of cultural values shapes Nordic national public policy strategies for artificial intelligence (AI). Technology in Society, 63, 101421.
- Rosseel, Y. (2012). Lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 1-36.
- Saranto, K., & Hovenga, E. J. (2004). Information literacy-What it is about?: Literature review of the concept and the context. International Journal of Medical Informatics, 73(6), 503-513.
- Simonsohn, U. (2009). Direct risk aversion: Evidence from risky prospects valued below their worst outcome. Psychological Science, 20(6), 686-692.
- Southworth, J., Migliaccio, K., Glover, J., Reed, D., McCarty, C., Brendemuhl, J., & Thomas, A. (2023). Developing a model for AI Across the curriculum: Transforming the higher education landscape via innovation in AI literacy. Computers and Education: Artificial Intelligence, 4, 100127.
- Staksrud, E., Olafsson, K., & Livingstone, S. (2013). Does the use of social networking sites increase children's risk of harm? Computers in Human Behavior, 29(1), 40-50.
- Steiger, J. H. (1990). Structural model evaluation and modification: An interval estimation approach. Multivariate Behavioral Research, 25(2), 173-180.
- Tan, A. S., Lee, C. J., & Chae, J. (2015). Exposure to health (mis) information: Lagged effects on young adults ㅍ health behaviors and potential pathways. Journal of Communication, 65(4), 674-698.
- Tomarken, A. J., & Waller, N. G. (2005). Structural equation modeling: Strengths, limitations, and misconceptions. Annual Review of Clinical Psychology, 1, 31-65.
- van der Zeeuw, A., Van Deursen, A. J., & Jansen, G. (2019). Inequalities in the social use of the Internet of things: A capital and skills perspective. New Media & Society, 21(6), 1344-1361.
- van Laar, E., Van Deursen, A. J., Van Dijk, J. A., & De Haan, J. (2017). The relation between 21st-century skills and digital skills: A systematic literature review. Computers in Human Behavior, 72, 577-588.
- Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157-178.
- Walter, Y. (2024). Embracing the future of Artificial Intelligence in the classroom: The relevance of AI literacy, prompt engineering, and critical thinking in modern education. International Journal of Educational Technology in Higher Education, 21(1), 15.
- Wang, B., Rau, P. L. P., & Yuan, T. (2023). Measuring user competence in using artificial intelligence: Validity and reliability of artificial intelligence literacy scale. Behaviour & Information Technology, 42(9), 1324-1337.
- Wang, C. H., & Wu, C. L. (2022). Bridging the digital divide: The smart TV as a platform for digital literacy among the elderly. Behaviour & Information Technology, 41(12), 2546-2559.
- Wang, P. (2019). On defining artificial intelligence. Journal of Artificial General Intelligence, 10(2), 1-37.
- Wang, W., & Siau, K. (2019). Artificial intelligence, machine learning, automation, robotics, future of work and future of humanity: A review and research agenda. Journal of Database Management (JDM), 30(1), 61-79.
- Wang, Y. Y., & Wang, Y. S. (2022). Development and validation of an artificial intelligence anxiety scale: An initial application in predicting motivated learning behavior. Interactive Learning Environments, 30(4), 619-634.
- White, A., Breazeale, M., & Collier, J. E. (2012). The effects of perceived fairness on customer responses to retailer SST push policies. Journal of Retailing, 88(2), 250-261.
- Zawacki-Richter, O., Marin, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education-where are the educators? International Journal of Educational Technology in Higher Education, 16(1), 1-27.
- 방송통신위원회 (2024). 2023년 지능정보사회 이용자 패널조사. https://www.kcc.go.kr/user.do;jsessionid=IAQBoWhhXJkTOg9Zt08sadcAu2FS8kBEgvfvp7Zc.servlet-aihgcldhome10?mode=view&page=A02060400&dc=K02060400&boardId=1030&cp=1&boardSeq=61938
- OpenAI (2024). ChatGPT: An AI language model [Language model]. OpenAI, https://www.openai.com/research