• 제목/요약/키워드: AI의 역할

검색결과 369건 처리시간 0.027초

ExoBrain을 위한 한국어 의미역 가이드라인 및 말뭉치 구축 (Korean Proposition Bank Guidelines for ExoBrain)

  • 임수종;권민정;김준수;김현기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.250-254
    • /
    • 2015
  • 본 논문은 한국어 의미역을 정의하고, 기계학습에 기반하여 한국어 의미역 인식 기술을 개발할 때 필요한 학습 말뭉치를 구축할 때 지켜야할 가이드라인을 제시하고자 한다. 한국어 의미역 정의는 전세계적으로 널리 쓰이고 있는 Proposition Bank를 따르면서, 한국어의 특성을 반영하였다. 또한 정의된 의미역 및 태깅 가이드라인에 따라 반자동 태깅 툴을 이용하여 말뭉치를 구축하였다.

  • PDF

JPEG AI의 부호화 프레임워크들의 분석 및 활용 사례에 대한 소개

  • 한승진;김영섭
    • 방송과미디어
    • /
    • 제28권1호
    • /
    • pp.13-28
    • /
    • 2023
  • 이미지 압축은 이미지 및 영상처리에서 주요한 역할을 하며, 자율주행, 클라우드, 영상 송출 등의 분야에서 빅데이터를 처리해야 하는 수요가 늘어남에 따라 지속적인 연구가 진행 중이다. 그 중심에는 딥러닝(deep learning)의 발전이 자리잡고 있으며, 심층 신경망(deep neural network)을 효과적으로 학습하는 알고리즘들을 적용한 논문들은 기존 압축 포맷인 JPEG, JPEG 2000, MPEG 등의 압축 성능을 뛰어넘는 결과를 보여 주고 있다. 이에 따라 JPEG AI는 딥러닝 기반 학습 이미지 압축의 표준을 제정하는 일을 진행 중이다. 본 기고에서는 JPEG AI가 표준화하고자 하는 기술과 JPEG AI에 제안한 압축 프레임워크들을 분석하고, 활용 사례들을 소개하여 JPEG AI 기반 학습 이미지 압축 모델의 동향에 대해 알아보고자 한다.

  • PDF

정부의 인공지능(AI) 기반 서비스에 대한 국민의 사용 의향 분석: 공공가치와 확장된 기술수용모형을 중심으로 (Analysis of the Public's Intention to Use the Government's Artificial Intelligence (AI)-based Services: Focusing on Public Values and Extended Technology Acceptance Model)

  • 한명성
    • 한국콘텐츠학회논문지
    • /
    • 제21권8호
    • /
    • pp.388-402
    • /
    • 2021
  • 인공지능(AI)의 효용성은 다양한 사례를 통해 입증되었으며, 이젠 정부 또한 적극적인 AI의 주요 수요자이자 공급자의 역할을 수행하고 있다. 이에 따라, AI 서비스에 대한 국민의 사용 의향에 대한 연구는 매우 중요한 가치를 지니게 되었다. 따라서 본 연구는 정부의 행정가치 실현에 대한 기대, 전자정부 사용경험 등 주요 설명 변수들이 국민의 AI 서비스 사용 의향에 대해 미치는 영향을 파악하기 위해 확장된 기술수용모형을 활용하여 분석을 시행하였다. 분석 결과, 국민은 AI 서비스가 효과성, 책무성과 연관된 분야에 미치는 영향이 높다고 생각할수록 사용 의향이 높았던 반면, 투명성에 연관된 분야는 유의미한 영향이 없었다. 그 외에 전자정부 서비스가 용이하다고 느낄수록, 개인정보 공개에 적극적일수록, 초연결사회에 대한 기대가 높을수록 AI 서비스에 대한 사용 의향이 높았다. 본 연구는 국민의 적극적인 AI 서비스의 사용을 유도하여 첨단사회의 도래를 앞당기기 위한 정부의 역할을 제시하였다는 점에서 의의가 있다.

스마트 미러를 이용한 스마트팜 디스플레이 장치 (Smart Farm Display Device Using Smart Mirror)

  • 이규환;박현준;전진호;양선아;방우현;하성재;노성동
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.790-791
    • /
    • 2023
  • 본 논문은 스마트 미러를 활용한 스마트팜 디스플레이 장치의 중요성과 잠재적인 활용 가능성을 논의하며, 농업 분야의 혁신과 정보 기술의 융합이 농업 생산성을 향상하는 역할을 강조한다. 스마트 미러를 통해 제공되는 실시간 정보와 데이터는 농업 종사자들에게 생산성 향상 및 농작물의 품질을 향상 시키며, 지속 가능한 농업을 실현하는 데 도움을 줄 것으로 기대된다.

인공 지능을 이용한 흉부 엑스레이 이미지에서의 이물질 검출 (Detecting Foreign Objects in Chest X-Ray Images using Artificial Intelligence)

  • 한창화
    • 한국방사선학회논문지
    • /
    • 제17권6호
    • /
    • pp.873-879
    • /
    • 2023
  • 본 연구는 인공지능(AI)을 사용하여 흉부 엑스레이 이미지에서 이물질을 탐지하는 방법을 탐구하였다. 의료영상학, 특히 흉부 엑스레이는 폐렴이나 폐암과 같은 질병을 진단하는 데 매우 중요한 역할을 한다. 영상의학 검사가 증가함에 따라 AI는 효율적이고 빠른 진단을 위한 중요한 도구가 되었다. 하지만 이미지에는 단추나 브래지어 와이어와 같은 일상적인 장신구를 포함한 이물질이 포함될 수 있어 정확한 판독을 방해할 수 있다. 본 연구에서는 이러한 이물질을 정확하게 식별하는 AI 알고리즘을 개발하였고, 미국 국립보건원 흉부 엑스레이 데이터셋을 가공하여 YOLOv8 모델을 기반으로 처리하였다. 그 결과 정확도, 정밀도, 리콜, F1-score가 모두 0.91에 가까울 정도로 높은 탐지 성능을 보였다. 이번 연구는 AI의 뛰어난 성능에도 불구하고 이미지 내 이물질로 인해 판독 결과가 왜곡될 수 있는 문제점을 해결함으로써 영상의학 분야에서 AI의 혁신적인 역할과 함께, 임상 구현에 필수적인 정확성에 기반하여 신뢰성을 강조하였다.

테이블 구조 정보를 활용한 헤더 텍스트 생성 (Header Text Generation based on Structural Information of Table)

  • 정해민;심묘섭;민경구;최주영;박민준;최정규
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.415-418
    • /
    • 2023
  • 테이블 데이터는 일반적으로 헤더와 데이터로 구성되며, 헤더는 데이터의 구조와 내용을 이해하는데 중요한 역할을 한다. 하지만 웹 스크래핑 등을 통해 얻은 데이터와 같이 다양한 상황에서 헤더 정보가 누락될 수 있다. 수동으로 헤더를 생성하는 것은 시간이 많이 걸리고 비효율적이기 때문에, 본 논문에서는 자동으로 헤더를 생성하는 태스크를 정의하고 이를 해결하기 위한 모델을 제안한다. 이 모델은 BART를 기반으로 각 열을 구성하는 텍스트와 열 간의 관계를 분석하여 헤더 텍스트를 생성한다. 이 과정을 통해 테이블 데이터의 구성요소 간의 관계에 대해 이해하고, 테이블 데이터의 헤더를 생성하여 다양한 애플리케이션에서의 활용할 수 있다. 실험을 통해 그 성능을 평가한 결과, 테이블 구조 정보를 종합적으로 활용하는 것이 더 높은 성능을 보임을 확인하였다.

  • PDF

도메인 적응 기술 기반 질문 문장에 대한 의미역 인식 연구 (A Study of Semantic Role Labeling using Domain Adaptation Technique for Question)

  • 임수종;김현기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.246-249
    • /
    • 2015
  • 기계학습 방법에 기반한 자연어 분석은 학습 데이터가 필요하다. 학습 데이터가 구축된 소스 도메인이 아닌 다른 도메인에 적용할 경우 한국어 의미역 인식 기술은 10% 정도 성능 하락이 발생한다. 본 논문은 기존 도메인 적응 기술을 이용하여 도메인이 다르고, 문장의 형태도 다를 경우에 도메인 적응 알고리즘을 적용하여, 질의응답 시스템에서 필요한 질문 문장 의미역 인식을 위해, 소규모의 질문 문장에 대한 학습 데이터 구축만으로도 한국어 질문 문장에 대해 성능을 향상시키기 위한 방법을 제안한다. 한국어 의미역 인식 기술에 prior 모델을 제안한다. 제안하는 방법은 실험결과 소스 도메인 데이터만 사용한 실험보다 9.42, 소스와 타겟 도메인 데이터를 단순 합하여 학습한 경우보다 2.64의 성능향상을 보였다.

  • PDF