• Title/Summary/Keyword: AHRS (Attitude & Heading Reference System)

Search Result 41, Processing Time 0.024 seconds

Comparison of Attitude Estimation Methods for DVL Navigation of a UUV (UUV의 DVL 항법을 위한 자세 추정 방법 비교)

  • Jeong, Seokki;Ko, Nak Yong;Choi, Hyun-Taek
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.4
    • /
    • pp.216-224
    • /
    • 2014
  • This paper compares methods for attitude estimation of a UUV(Unmanned Underwater Vehicle). Attitude estimation plays a key role in underwater navigation using DVL(Doppler Velocity Log). The paper proposes attitude estimation methods using EKF(Extended Kalman Filter), UKF(Unscented Kalman Filter), and CF(Complementary Filter). It derives methods using the measurements from MEMS-AHRS(Microelectromechanical Systems-Attitude Heading Reference System) and DVL. The methods are used for navigation in a test pool and their navigation performance is compared. The results suggest that even if there is no measurement relative to some absolute landmarks, DVL-only navigation can be useful for navigation in a limited time and range.

Recognition of Basic Motions for Figure Skating using AHRS (AHRS를 이용한 피겨스케이팅 기본 동작 인식)

  • Kwon, Ki-Hyeon;Lee, Hyung-Bong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.3
    • /
    • pp.89-96
    • /
    • 2015
  • IT is widely used for biomechanics and AHRS sensor also be highlighted with small sized characteristics and price competitiveness in the field of motion measurement and analysis of sports. In this paper, we attach the AHRS to the figure skate shoes to measure the motion data like spin, forward/backward, jump, in/out edge and toe movement. In order to reduce the measurement error, we have adopted the sensors equipped with Madgwick complementary filtering and also use Euler angle to quaternion conversion to reduce the Gimbal-lock effect. We test and experiment the accuracy and execution time of the pattern recognition algorithms like PCA, ICA, LDA, SVM to show the recognition possibility of it on the basic motions of figure skating from the 9-axis trajectory information which is gathered from AHRS sensor. From the result, PCA, ICA have low accuracy, but LDA, SVM have good accuracy to use for recognition of basic motions of figure skating.

Development of 3D CSGNSS/DR Integrated System for Precise Ground-Vehicle Trajectory Estimation (고정밀 차량 궤적 추정을 위한 3 차원 CSGNSS/DR 융합 시스템 개발)

  • Yoo, Sang-Hoon;Lim, Jeong-Min;Jeon, Jong-Hwa;Sung, Tae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.967-976
    • /
    • 2016
  • This paper presents a 3D carrier-smoothed GNSS/DR (Global Navigation Satellite System/Dead Reckoning) integrated system for precise ground-vehicle trajectory estimation. For precise DR navigation on sloping roads, the AHRS (Attitude Heading Reference System) methodology is employed. By combining the integrated carrier phase of GNSS and DR sensor measurements, a vehicle trajectory with an accuracy of less than 20cm is obtained even when cycle slip or change of visibility occur. In order to supplement the weak GNSS environment with DR successfully, the DR sensor is precisely compensated for using GNSS Doppler measurements when GNSS visibility is good. By integrating a multi-GNSS receiver with low-cost IMU, a precise 3D navigation system for land vehicles is proposed in this paper. For real-time implementation, a decoupled Kalman filter is employed in the integrated system. Through field experiments, the performance of the proposed system is verified in various road environments, including sloping roads, good-visibility areas, high multi-path areas, and under-ground parking areas.

A Study on the Wireless Ship Motion Measurement System Using AHRS (AHRS를 이용한 무선 선체 운동 측정 시스템에 관한 연구)

  • Kim, Dae-Hae;Lee, Sang-Min;Kong, Gil-Young
    • Journal of Navigation and Port Research
    • /
    • v.37 no.6
    • /
    • pp.575-580
    • /
    • 2013
  • The IMU(Inertial Measurement Unit) which is the expensive equipment has been used as a special limited area, usually in measurement of posture of applying to the areas of ship, submarine, aircraft and military equipment application. However, in the current situation, MEMS AHRS technology can replace the high-priced IMU in MEMS AHRS selected application field. In this paper, wireless hull motion measurement system was suggested for measuring key elements of ship's movement such as rolling, pitching and yawing using gyro, acceleration and magnetic sensors of AHRS. In order to reduce the error such as instantaneous acceleration, effects and vibration of geomagnetic, we have adopted the sensors equipped with Kalman filtering. The Wireless hull motion measurement system using AHRS sensors was tested in actual ship and it could easily be applied in limited installation circumstances of the ship. In the future, this system can be useful in the navigation safety and marine accident analysis by using with ship equipment such as INS or VDR in the maritime.

Development of Underwater Cleaning Robot Control Algorithm for Cleanup Efforts in Industrial Area (산업현장 침전물 청소작업용 수중청소로봇 제어 알고리즘 기술 개발)

  • Lee, Jung-Woo;Lee, Jong-Deuk;Choi, Young-Ho;Han, Kyung-Lyong;Suh, Jin-Ho
    • Journal of Power System Engineering
    • /
    • v.21 no.4
    • /
    • pp.26-33
    • /
    • 2017
  • In this paper, we developed a control algorithm to maximize the cleaning performance and the cleaning efficiency of the underwater cleaning robot platform which has been developed for various cistern environment in the industrial field. Through these research and development, we have presented the operation and application of underwater cleaning robots that have been developed, and contributed to commercialization. Finally, this results were verified the effectiveness through actual field experiments.

Development of Low-Cost Automatic Flight Control System for an Unmanned Target Drone (무인표적기용 저가형 자동비행시스템 개발)

  • Lee, Jang-Ho;Ryu, Hyeok;Kim, Jae-Eun;Ahn, Iee-Ki
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.1
    • /
    • pp.19-26
    • /
    • 2004
  • This paper deals with the automatic flight control system for an unmanned target drone which is operated by an army as an anti-air gun shooting training. By automation of unmanned target drone that is manually operated by external pilot, pilot can reduce workload and an army can reduce the budget. Most UAVs which are developed until today use high-cost sensors as AHRS and IMU to measure the attitude, but those are contradictory for the reduction of budget. This paper says the development of low-cost automatic flight control system which makes possible of automatic flight with low-cost sensors. We have developed the integrated automatic flight control system by integrating electricity module, switching module, monitoring module and RC receiver as an one module. We also prove the performance of automatic flight control system by flight test.

  • PDF

Experimental Verification of Effectiveness of Stabilization Control System for Mobile Surveillance Robot (기동형 경계로봇 안정화 시스템의 실험적 검증)

  • Kim, Sung-Soo;Lee, Dong-Youm;Kwon, Jeong-Joo;Park, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.359-365
    • /
    • 2011
  • A mobile surveillance robot is defined as a surveillance robot system that is mounted on a mobile platform and is used to protect public areas such as airports or harbors from invaders. The mobile surveillance robot that is mounted on a mobile platform consists of a gun module, a camera system module, an embedded control system, and AHRS (Attitude and Heading Reference System). It has two axis control systems for controlling its elevation and azimuth. In order to obtain stable images for targeting invaders, this system requires a stabilizer to compensate any disturbance due to vehicle motion. In this study, a virtual model of a mobile surveillance robot has been created and ADAMS/Matlab simulations have been performed to verify the suitability of the proposed stabilization algorithm. Further, the suitability of the stabilization algorithm has also been verified using a mock-up of the mobile surveillance robot and a 6-DOF (Degree Of Freedom) motion simulator.

The Study of an Automatic Tracking and Pointing Method and the Regarding System for Facing Two Antennas (상호 대국의 안테나 간 자동 추적 지향 기법 및 장치 연구)

  • Gimm, Hak In;Cho, Sung Hoon;Lee, Chong Hyo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.498-509
    • /
    • 2015
  • The existing mobile antenna networks in the military use have been operated by the manual pointing between two antennas. The work presented here describes the study of ATPC(Automatic Tracking and Pointing Control) system between facing antennas and the related tracking and pointing performances. This system is able to automatically track the maximum RSSI(Received Signal Strength Indication) value from the source's RF(Radio Frequency) signal and then control for maintaining the LOS(Line of Sight) between two antennas. The system has three major units; the driving unit consisting of motors, harmonic drives and encoders, the sensor unit with a GPS(Global Positioning System) and AHRS(Attitude and Heading Reference System) and the control unit regulating all the tracking and pointing events. By using PI(Proportional and Integral) controller, this system is able to properly track and point the other antenna under the external disturbance like the wind load. Both the simulation and the experimental works have been successively carried out to prove the performances of the system.

Development of Underwater Laser Scanner with Efficient and Flexible Installation for Unmanned Underwater Vehicle (무인잠수정을 위한 효과적이고 유연한 설치 성능을 지닌 수중 레이저스캐너 개발)

  • Lee, Yeongjun;Lee, Yoongeon;Chae, Junbo;Choi, Hyun-Taek;Yeu, Tae-Kyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.511-517
    • /
    • 2018
  • This paper proposes a vision-based underwater laser scanner with separate structures for an underwater camera and a line laser projector. Because the two devices can be adaptively placed regardless of the features of the unmanned underwater vehicle (UUV), the scanner has significant advantages in relation to its availability and flexibility. Position calibration between the underwater camera and laser projector guarantees a 3D measuring performance with high accuracy. To verify the proposed underwater laser scanner, a test-bed system was manufactured, which consisted of the laser projector, camera, Pan&Tilt, and Attitude and Heading Reference System (AHRS). A camera-laser calibration test and simple 3D reconstruction test were performed in a water tank and the experimental results are reported.

Danger detection technology based on multimodal and multilog data for public safety services

  • Park, Hyunho;Kwon, Eunjung;Byon, Sungwon;Shin, Won-Jae;Jung, Eui-Suk;Lee, Yong-Tae
    • ETRI Journal
    • /
    • v.44 no.2
    • /
    • pp.300-312
    • /
    • 2022
  • Recently, public safety services have attracted significant attention for their ability to protect people from crimes. Rapid detection of dangerous situations (that is, abnormal situations where someone may be harmed or killed) is required in public safety services to reduce the time required to respond to such situations. This study proposes a novel danger detection technology based on multimodal data, which includes data from multiple sensors (for example, accelerometer, gyroscope, heart rate, air pressure, and global positioning system sensors), and multilog data, which includes contextual logs of humans and places (for example, contextual logs of human activities and crime-ridden districts) over time. To recognize human activity (for example, walk, sit, and punch), the proposed technology uses multimodal data analysis with an attitude heading reference system and long short-term memory. The proposed technology also includes multilog data analysis for detecting whether recognized activities of humans are dangerous. The proposed danger detection technology will benefit public safety services by improving danger detection capabilities.