• Title/Summary/Keyword: AHHW and ALLW

Search Result 5, Processing Time 0.02 seconds

Estimation of the Lowest and Highest Astronomical Tides along the west and south coast of Korea from 1999 to 2017 (서해안과 남해안에서 1999년부터 2017년까지 최저와 최고 천문조위 계산)

  • BYUN, DO-SEONG;CHOI, BYOUNG-JU;KIM, HYOWON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.4
    • /
    • pp.495-508
    • /
    • 2019
  • Tidal datums are key and basic information used in fields of navigation, coastal structures' design, maritime boundary delimitation and inundation warning. In Korea, the Approximate Lowest Low Water (ALLW) and the Approximate Highest High Water (AHHW) have been used as levels of tidal datums for depth, coastline and vertical clearances in hydrography and coastal engineering fields. However, recently the major maritime countries including USA, Australia and UK have adopted the Lowest Astronomical Tide (LAT) and the Highest Astronomical Tide (HAT) as the tidal datums. In this study, 1-hr interval 19-year sea level records (1999-2017) observed at 9 tidal observation stations along the west and south coasts of Korea were used to calculate LAT and HAT for each station using 1-minute interval 19-year tidal prediction data yielded through three tidal harmonic methods: 19 year vector average of tidal harmonic constants (Vector Average Method, VA), tidal harmonic analysis on 19 years of continuous data (19-year Method, 19Y) and tidal harmonic analysis on one year of data (1-year Method, 1Y). The calculated LAT and HAT values were quantitatively compared with the ALLW and AHHW values, respectively. The main causes of the difference between them were explored. In this study, we used the UTide, which is capable of conducting 19-year record tidal harmonic analysis and 19 year tidal prediction. Application of the three harmonic methods showed that there were relatively small differences (mostly less than ±1 cm) of the values of LAT and HAT calculated from the VA and 19Y methods, revealing that each method can be mutually and effectively used. In contrast, the standard deviations between LATs and HATs calculated from the 1Y and 19Y methods were 3~7 cm. The LAT (HAT) differences between the 1Y and 19Y methods range from -16.4 to 10.7 cm (-8.2 to 14.3 cm), which are relatively large compared to the LAT and HAT differences between the VA and 19Y methods. The LAT (HAT) values are, on average, 33.6 (46.2) cm lower (higher) than those of ALLW (AHHW) along the west and south coast of Korea. It was found that the Sa and N2 tides significantly contribute to these differences. In the shallow water constituents dominated area, the M4 and MS4 tides also remarkably contribute to them. Differences between the LAT and the ALLW are larger than those between the HAT and the AHHW. The asymmetry occurs because the LAT and HAT are calculated from the amplitudes and phase-lags of 67 harmonic constituents whereas the ALLW and AHHW are based only on the amplitudes of the 4 major harmonic constituents.

Analysis on the Estimation Error of the Lowest and Highest Astronomical Tides using the Wido Tidal Elevation Data (위도 검조자료를 이용한 최저-최고 천문조위 추정 오차 분석)

  • Jeong, Shin Taek;Yoon, Jong Tae;Cho, Hongyeon;Ko, Dong Hui;Kang, Keum Seok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.2
    • /
    • pp.101-108
    • /
    • 2016
  • In designing of the wind power facilities, the highest and lowest astronomical tides (HAT and LAT) are needed in terms of an international design tidal water levels. The AHHW and ALLW, however, have been used as the design tidal levels in Korea. The HAT and LAT in the Wido coastal sea should be estimated to satisfy the standard because the pilot wind power facilities will be located in the adjacent Wido coastal sea. In this study, the HAT and LAT are estimated using the 31-years hourly tidal elevation data of the Wido tidal gauging station and the nodal variation patterns of the major lunar components, such as $M_2$, $O_1$, and $K_1$, are analysed to check the expected long-term lunar cycle, i.e., 18.61-year's nodal variation patterns. The temporal amplitude variations of the $M_2$, $O_1$, and $K_1$ clearly show the 18.61-years periodic patterns in case of the no-nodal correction condition. In addition, the suggested HAT and LAT elevations, estimated as the upper and lower confidence limits of the yearly HAT and LAT elevations, show 40 cm greater than AHHW and 35 cm lower than ALLW, respectively.

Analysis on the estimation errors of the lowest and highest astronomical tides for the southwestern 2.5 GW offshore wind farm, Korea

  • Ko, Dong Hui;Jeong, Shin Taek;Cho, Hong-Yeon;Kang, Keum-Seok
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.1
    • /
    • pp.85-94
    • /
    • 2018
  • For the design of wind-power facilities, the highest and lowest astronomical tides (HAT and LAT, respectively) are needed for the tidal-water levels regarding international designs; however, the approximate highest high water and approximate lowest low water AHHW and ALLW, respectively, have been used in Korea. The HAT and LAT in the wind-farm test-bed sea should be estimated to satisfy the international standard. In this study, the HAT and LAT are therefore estimated using the hourly tidal-elevation data of the Eocheongdo, Anmado, Younggwang, Gunsan, Janghang, and Seocheon tidal-gauging stations that are located in the adjacent coastal sea. The nodal variation patterns of the major lunar components, such as $M_2$, $O_1$, and $K_1$ are analyzed to check the expected long-term lunar cycle, i.e., 18.61 year's nodal-variation patterns. The temporal amplitude variations of the $M_2$, $O_1$, and $K_1$ clearly show the 18.61-years periodic patterns in the case of the no-nodal correction condition. In addition, the suggested HAT and LAT elevations, estimated as the upper and lower confidence limits of the yearly HAT and LAT elevations, are 50 cm greater than the AHHW and 40 cm lower than the ALLW, respectively.

Analysis on the Emersion and Submersion Patterns of the Coastal Zone in Korea (한국 연안의 노출 및 침수 양상 분석)

  • Ko, Dong Hui;Jeong, Shin Taek;Cho, Hong-Yeon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.5
    • /
    • pp.312-317
    • /
    • 2016
  • The submersion and emersion patterns are key factors that directly influence the habitat environment of the coastal plants and animals. In this study, the coasts are divided into five zones (zones 1, 2, 3, 4, and 5 - not flooded, flooded once, flooded and exposed to air twice, exposed to air once, continuously flooded in the day, respectively) based on the patterns using tidal elevation data at the major eight stations and the domestic and international reference tidal levels, i.e., AHHW, ALLW, HAT and LAT, are also estimated to analyse the characteristics of the five distinct zones. Based on the results, the frequency of the zone 3 are dominant and forms from 87.2% to 88.2% (nearly constant) irrelevant with the tidal ranges at all stations. The taking-up percentages of the zones 2 and 4 show nearly constant, below 4% and over 8%, respectively. In Pohang station classified as the mainly diurnal tide, the percentages are decreased to 1.4% in zone 2 and increased to 10.8% due to the effects of the annual and semi-annual tidal components.

Analysis on the Occurrence Probability Distribution of Tidal Levels using Harmonic Constants (조화상수를 이용한 조위 발생확률분포 분석)

  • Jeong Shin Taek;Cho Hong Yeon;Kim Jeong Dae;Cho Byum Jun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1053-1057
    • /
    • 2005
  • The occurrence probability (OP) distributions of tide levels using harmonic constants of six tidal gauging stations in Korean coastal zone were estimated and analysed in detail. OP analysis using harmonic constants data of Incheon(Youldo), Mokpo, Yeosu, Pusan, Pohang and Sokcho was carried out and compared with the OP using hourly tidal elevation data which were served through the Internet Homepage by the National Ocean Research Institute. The tidal elevation data were divided by the AHHW (ALLW) value referenced to MSL in order to compare the OP patterns in a relative scale. The OP of the tidal elevation calculated using 38 harmonic tidal constituents relatively well agreed with those of hourly observed tidal elevation data. However, the OP results using four harmonic tidal constituents overestimate the occurrence probability at the peak points and underestimate at the tail-regions of the OP. Especially, the OP patterns of the Sokcho and Pohang tidal gauging stations on the East Sea show totally different patterns and the estimation method using four harmonic constants should be modified and application should be strictly limited on the East Sea areas. The OP patterns are considerably well generated in case of the OP generation using the additional two or three dominant tidal constituents,

  • PDF