• Title/Summary/Keyword: AG490

Search Result 26, Processing Time 0.035 seconds

Optical properties of top-emission organic light-emitting diodes due to a change of cathode electrode (음전극 변화에 따른 전면 유기 발광 소자의 광학적 특성)

  • Joo, Hyun-Woo;An, Hui-Chul;Na, Su-Hwan;Kim, Tae-Wan;Jang, Kyung-Wook;Oh, Hyun-Suk;Oh, Yong-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.345-346
    • /
    • 2008
  • We have studied an emission spectra of top-emssion organic light-emitting diodes(TEOLED) due to a change of cathode and organic layer thickness. Device structure is Al(100nm)/TPD(xnm)/$Alq_3$(ynm)/LiF(0.5nm)/cathode. And two different types of cathode were used; one is LiF(0.5nm)/Al(25nm) and the other is LiF(0.5nm)/Al(2nm)/Ag(30nm). While a thickness of hole-transport layer of TPD was varied from 35 to 65nm, an emissive layer thickness of $Alq_3$ was varied from 50 to 100nm for two devices. A ratio of those two layer was kept to be about 2:3. Al and Al/Ag double layer cathode devices show that the emission spectra were changed from 490nm to 560nm and from 490nm to 560nm, respectively, when the total organic layer increase. Full width at half maximum was changed from 67nm to 49nm and from 90nm to 35nm as the organic layer thickness increases. All devices show that view angle dependent emission spectra show a blue shift. Blue shift is strong when the organic layer thickness is more than 140nm. Devece with Al/Ag double layer cathode is more vivid.

  • PDF

An Investigation on Gridline Edges in Screen-Printed Crystalline Silicon Solar Cells

  • Kim, Seongtak;Park, Sungeun;Kim, Young Do;Kim, Hyunho;Bae, Soohyun;Park, Hyomin;Lee, Hae-Seok;Kim, Donghwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.490.2-490.2
    • /
    • 2014
  • Since the general solar cells accept sun light at the front side, excluding the electrode area, electrons move from the emitter to the front electrode and start to collect at the grid edge. Thus the edge of gridline can be important for electrical properties of screen-printed silicon solar cells. In this study, the improvement of electrical properties in screen-printed crystalline silicon solar cells by contact treatment of grid edge was investigated. The samples with $60{\Omega}/{\square}$ and $70{\Omega}/{\square}$ emitter were prepared. After front side of samples was deposited by SiNx commercial Ag paste and Al paste were printed at front side and rear side respectively. Each sample was co-fired between $670^{\circ}C$ and $780^{\circ}C$ in the rapid thermal processing (RTP). After the firing process, the cells were dipped in 2.5% hydrofluoric acid (HF) at room temperature for various times under 60 seconds and then rinsed in deionized water. (This is called "contact treatment") After dipping in HF for a certain period, the samples from each firing condition were compared by measurement. Cell performances were measured by Suns-Voc, solar simulator, the transfer length method and a field emission scanning electron microscope. According to HF treatment, once the thin glass layer at the grid edge was etched, the current transport was changed from tunneling via Ag colloids in the glass layer to direct transport via Ag colloids between the Ag bulk and the emitter. Thus, the transfer length as well as the specific contact resistance decreased. For more details a model of the current path was proposed to explain the effect of HF treatment at the edge of the Ag grid. It is expected that HF treatment may help to improve the contact of high sheet-resistance emitter as well as the contact of a high specific contact resistance.

  • PDF

Comparison of Axial and Radial Flow Chromatography on Protein Separation Speed and Resolution (축방향과 반경방향흐름 크로마토그래피의 단백질 분리속도와 분리능에 대한 비교)

  • 김윤하;이은규
    • KSBB Journal
    • /
    • v.10 no.5
    • /
    • pp.482-490
    • /
    • 1995
  • The relationship between pressure drop and liquid flow rate, for an axial and a radial flow chromatographic column packed with compressible porous media was theoretically analyzed using modified Kozeny-Carman equation. The results were compared with experimental observations obtained using compressible DEAE-agarose as a model medium. At 2-9 psi range studied, the theoretical derivation accounting for 'gel compression' effect predicted simple Langmuirian type response of volumetric flow rate to changes in pressure drop. On the other hand, the experimental response was more or less sigmoidal. At the same pressure drop, radial column showed 2-3 times higher flow rates than those of axial column both theoretically and experimentally. Using r-HBsAg crude extract, protein resolution effects between the two types of columns at different flow rates were compared side-by-side. It turned out that, though general chromatographic behavior was very similar, axial column was somewhat superior in terms of r-HBsAg recovery yield and specificity. However, the number of theoretical plates analysis indicated the protein resolution effects were comparable.

  • PDF

Zinc Borosilicate Thick Films as a Ag-Protective Layer for Dye-Sensitized Solar Cells

  • Yeon, Deuk-Ho;Lee, Eun-Young;Kim, Kyung-Gon;Park, Nam-Gyu;Cho, Yong-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.3
    • /
    • pp.313-316
    • /
    • 2009
  • A zinc borosilicate glass having a low softening temperature of $490^{\circ}C$ has been investigated as a protective layer for Ag patterns against chemical reactions with a $I^-/I_3^-$ electrolyte in dye-sensitized solar cells (DSSCs). A thick glass layer was prepared by the typical screen printing and firing processes to obtain a final thickness of ${\sim}5{\mu}m$. The chemical leaching performance of the glass layer in the electrolyte revealed that the reactive Ag pattern can be significantly protected by utilizing the low softening protective layer. The electrical resistance of the FTO-coated glass substrate was effectively maintained at a low value of ${\sim}27{\Omega}$ as long as the glass layer was well densified at a sufficiently high temperature of ${\sim}520^{\circ}C$. The transmittance of the layer was near 60%, depending on the firing temperature of the glass layer.

Properties of Crude Trehalase from Agaricus bisporus (양송이 중의 조(粗) Trehalase의 분리와 그 성질)

  • Lee, Seung-In;Kim, Byung-Mook
    • The Korean Journal of Mycology
    • /
    • v.14 no.3
    • /
    • pp.209-214
    • /
    • 1986
  • In order to study the trehalase (EC 3. 2. 1. 28) from mushroom, Agaricus bisporus Lange Sing., the crude trehalase preparation was separated by fractionation of mushroom extracts with ammonium sulfate between 0.4 and 1.0 saturation, and its properties were examined. Mushroom trehalase showed optimum pH 6.0, and optimum temperature $40^{\circ}C$. The enzyme was stable at pH range between 5.0 and 7.0, and at temperature below $50^{\circ}C$. The activities of crude trehalase had proportional relations with enzyme concentrations below 490.2 mg % of protein and with substrate concentration below $2.6{\times}10^{-3}M$, showing a Km value of 0.760 mM. The enzyme was inhibited by some metal ions such as $Sn^{2+}$, $Ca^{2+}$, $Hg^{2+}$, $Cd^{2+}$, $Cu^{2+}$, $Mn^{2+}$, $Zn^{2+}$, $Al^{3+}$, and $Fe^{3+}$, while $Ag^{+}$, $Ba^{2+}$, and $Mg^{2+}$ demonstrated remarkable increasing effects on the enzyme activity.

  • PDF

Clostridium difficile Toxin A Inhibits Erythropoietin Receptor-Mediated Colonocyte Focal Adhesion Through Inactivation of Janus Kinase-2

  • Nam, Seung Taek;Seok, Heon;Kim, Dae Hong;Nam, Hyo Jung;Kang, Jin Ku;Eom, Jang Hyun;Lee, Min Bum;Kim, Sung Kuk;Park, Mi Jung;Chang, Jong Soo;Ha, Eun-Mi;Shong, Ko Eun;Hwang, Jae Sam;Kim, Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1629-1635
    • /
    • 2012
  • Previously, we demonstrated that the erythropoietin receptor (EpoR) is present on fibroblasts, where it regulates focal contact. Here, we assessed whether this action of EpoR is involved in the reduced cell adhesion observed in colonocytes exposed to Clostridium difficile toxin A. EpoR was present and functionally active in cells of the human colonic epithelial cell line HT29 and epithelial cells of human colon tissues. Toxin A significantly decreased activating phosphorylations of EpoR and its downstream signaling molecules JAK-2 (Janus kinase 2) and STAT5 (signal transducer and activator of transcription 5). In vitro kinase assays confirmed that toxin A inhibited JAK 2 kinase activity. Pharmacological inhibition of JAK2 (with AG490) abrogated activating phosphorylations of EpoR and also decreased focal contacts in association with inactivation of paxillin, an essential focal adhesion molecule. In addition, AG490 treatment significantly decreased expression of occludin (a tight junction molecule) and tight junction levels. Taken together, these data suggest that inhibition of JAK2 by toxin A in colonocytes causes inactivation of EpoR, thereby enhancing the inhibition of focal contact formation and loss of tight junctions known to be associated with the enzymatic activity of toxin A.

$Interferon-{\Upsilon}$ and Lipopolysaccaride Induce Mouse Guanylate-Binding Protein 3 (mGBP3) Expression in the Murine Macrophage Cell Line RAW264-7

  • Han, Byung-Hee
    • Archives of Pharmacal Research
    • /
    • v.22 no.2
    • /
    • pp.130-136
    • /
    • 1999
  • Mouse guanylate-binding protein 3 (mGBP3) is a 71-kDa GTPase which belongs to GTP-binding protein family. The present study showed that the expression of mGBP3 transcript was readily induced in a dose dependent fashion in the macrophage cell line RAW264.7 treated with either $interferon-{\gamma} (IFN-\gamma)$ or lipopolysaccaride (LPS). The expression of mGBP3 protein was also apparent by 4 and 6 h after the treatment of cells with IFN-\gamma (100 U/ml) or LPS ($1{\mu}g/ml$) , and remained at palteau for at least 24 h. Cycloheximide ($10{\mu}g/ml$) had no effect on the $IFN-\gamma-$ or LPS-induced mGBP3 expression, suggesting that the mGBP3 induction did not require further protein synthesis. Interestingly, a protein kinase C (PKC) inhibitor staurosporine (50 nM) abolished the induction of mGBP3 expression by LPS, but not by $IFN-{\gamma}$. These findings suggest that mGBP3 may be involved in the macrophage activation process and both IFN-\gamma and LS induce the mGBP3 expression through distinct signal transduction pathways.

  • PDF

Effects of Salicylic Acid and Indole Acetic Acid Exogenous Applications on Induction of Faba Bean Resistance against Orobanche crenata

  • Briache, Fatima Zahra;Ennami, Mounia;Mbasani-Mansi, Joseph;Lozzi, Assia;Abousalim, Abdelhadi;El Rodeny, Walid;Amri, Moez;Triqui, Zine El Abidine;Mentag, Rachid
    • The Plant Pathology Journal
    • /
    • v.36 no.5
    • /
    • pp.476-490
    • /
    • 2020
  • The parasitic weed, Orobanche crenata, is one of the most devastating constraint for faba bean production in Mediterranean regions. Plant host defense induction was reported as one of the most appropriate control methods in many crops. The aim of this study was to elucidate the effect of salicylic acid (SA) and indole acetic acid (IAA) on the induction of faba bean resistance to O. crenata under the field and controlled experimental conditions. Both hormones were tested on two contrasting faba bean genotypes: Giza 843 (partially resistant to O. crenata) and Lobab (susceptible) at three different application methods (seed soaking, foliar spray, and the combination of both seed soaking and foliar spray). Soaking seeds in SA or IAA provided the highest protection levels reaching ~75% compared to the untreated control plants. Both elicitors limited the chlorophyll content decrease caused by O. crenata infestation and increased phenolic compound production in host plants. Phenylalanine ammonia lyase, peroxidase, and polyphenol oxidase activities were stimulated in the host plant roots especially in the susceptible genotype Lobab. The magnitude of induction was more obvious in infested than in non-infested plants. Histological study revealed that both SA and IAA decreased the number of attached O. crenata spikes which could be related to specific defense responses in the host plant roots.

Ginsenoside Rg1 Induces Apoptosis through Inhibition of the EpoR-Mediated JAK2/STAT5 Signalling Pathway in the TF-1/Epo Human Leukemia Cell Line

  • Li, Jing;Wei, Qiang;Zuo, Guo-Wei;Xia, Jing;You, Zhi-Mei;Li, Chun-Li;Chen, Di-Long
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2453-2459
    • /
    • 2014
  • Ginsenoside Rg1 is one effective anticancer and antioxidant constituent of total saponins of Panax ginseng (TSPG), which has been shown to have various pharmacological effects. Our previous study demonstrated that Rg1 had anti-tumor activity in K562 leukemia cells. The aim of this study was designed to investigate whether Rg1 could induce apoptosis in TF-1/Epo cells and further to explore the underlying molecular mechanisms. Here we found that Rg1 could inhibit TF-1/Epo cell proliferation and induce cell apoptosis in vitro in a concentration and time dependent manner. It also suppressed the expression of EpoR on the surface membrane and inhibited JAK2/STAT5 pathway activity. Rg1 induced up-regulation of Bax, cleaved caspase-3 and C-PAPR protein and down-regulation of Bcl-2 and AG490, a JAK2 specific inhibitor, could enhance the effects of Rg1. Our studies showed that EpoR-mediated JAK2/STAT5 signaling played a key role in Rg1-induced apoptosis in TF-1/Epo cells. These results may provide new insights of Rg1 protective roles in the prevention a nd treatment of leukemia.

Luteolin Arrests Cell Cycling, Induces Apoptosis and Inhibits the JAK/STAT3 Pathway in Human Cholangiocarcinoma Cells

  • Aneknan, Ploypailin;Kukongviriyapan, Veerapol;Prawan, Auemduan;Kongpetch, Sarinya;Sripa, Banchob;Senggunprai, Laddawan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.12
    • /
    • pp.5071-5076
    • /
    • 2014
  • Cholangiocarcinoma (CCA) is one of the aggressive cancers with a very poor prognosis. Several efforts have been made to identify and develop new agents for prevention and treatment of this deadly disease. In the present study, we examined the anticancer effect of luteolin on human CCA, KKU-M156 cells. Sulforhodamine B assays showed that luteolin had potent cytotoxicity on CCA cells with IC50 values of $10.5{\pm}5.0$ and $8.7{\pm}3.5{\mu}M$ at 24 and 48 h, respectively. Treatment with luteolin also caused a concentration-dependent decline in colony forming ability. Consistent with growth inhibitory effects, luteolin arrested cell cycle progression at the G2/M phase in a dose-dependent manner as assessed by flow cytometry analysis. Protein expression of cyclin A and Cdc25A was down-regulated after luteolin treatment, supporting the arrest of cells at the G2/M boundary. Besides evident G2/M arrest, luteolin induced apoptosis of KKU-M156 cells, demonstrated by a distinct sub-G1 apoptotic peak and fluorescent dye staining. A decrease in the level of anti-apoptotic Bcl-2 protein was implicated in luteolin-induced apoptosis. We further investigated the effect of luteolin on JAK/STAT3, which is an important pathway involved in the development of CCA. The results showed that interleukin-6 (IL-6)-induced JAK/STAT3 activation in KKU-M156 cells was suppressed by treatment with luteolin. Treatment with a specific JAK inhibitor, AG490, and luteolin diminished IL-6-stimulated CCA cell migration as assessed by wound healing assay. These data revealed anticancer activity of luteolin against CCA so the agent might have potential for CCA prevention and therapy.