• 제목/요약/키워드: AFM Images

검색결과 159건 처리시간 0.02초

Highly Sulfonated Poly(Arylene Biphenylsulfone Ketone) Block Copolymers Prepared via Post-Sulfonation for Proton Conducting Electrolyte Membranes

  • Lee, Kyu Ha;Chu, Ji Young;Kim, Ae Rhan;Nahm, Kee Suk;Yoo, Dong Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권6호
    • /
    • pp.1763-1770
    • /
    • 2013
  • A series of the block copolymers were successfully synthesized from post-sulfonated hydrophilic and hydrophobic macromers via three-step copolymerization. The degrees of sulfonation (DS) of the copolymers (10%, 30%, or 50%) were controlled by changing the molar ratio of the hydrophilic and hydrophobic parts. The resulting block copolymers were characterized by $^1H$ NMR and other technologies. The membranes were successfully cast using dimethyl sulfoxide (DMSO) solution at $100^{\circ}C$. The copolymers were characterized to confirm chemical structure by $^1H$ NMR and FT-IR. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) demonstrated that all sulfonated block copolymers exhibited good thermal stability with an initial weight loss at temperatures above $240^{\circ}C$. The membranes showed acceptable ion exchange capacity (IEC) and water uptake values in accordance with DS. The maximum proton conductivity was 184 mS $cm^{-1}$ in block copolymer-50 at $60^{\circ}C$ and 100% relative humidity, while the conductivity of Nifion-115 was 160 mS $cm^{-1}$ under the same measurement conditions. AFM images of the block copolymer membranes showed well separated the hydrophilic and hydrophobic domains. From the observed results it is that the prepared block membranes can be considered as suitable polymer electrolyte membranes for the application of polymer electrolyte membrane fuel cells (PEMFC).

3C-SiC 버퍼층이 AlN 박막형 SAW 특성에 미치는 영향 (Effect of a 3C-SiC buffer layer on SAW properties of AlN films)

  • 황시홍;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.235-235
    • /
    • 2009
  • This paper describes the influence of a polycrystalline (poly) 3C-SiC buffer layer on the surface acoustic wave (SAW) properties of poly aluminum nitride (AlN) thin films by comparing the center frequency, insertion loss, the electromechanical coupling coefficient ($k^2$), andthetemperaturecoefficientoffrequency(TCF) of an IDT/AlN/3C-SiC structure with those of an IDT/AlN/Si structure, The poly-AlN thin films with an (0002)-preferred orientation were deposited on a silicon (Si) substrate using a pulsed reactive magnetron sputtering system. Results show that the insertion loss (21.92 dB) and TCF (-18 ppm/$^{\circ}C$) of the IDT/AlN/3C-SiC structure were improved by a closely matched coefficient of thermal expansion (CTE) and small lattice mismatch (1 %) between the AlN and 3C-SiC. However, a drawback is that the $k^2(0.79%)$ and SAW velocity(5020m/s) of the AlN/3C-SiC SAW device were reduced by appearing in some non-(0002)AlN planes such as the (10 $\bar{1}$ 2) and (10 $\bar{1}$ 3) AlN planes in the AlN/SiC film. Although disadvantages were shown to exist, the use of the AlN/3C-SiC structure for SAW applications at high temperatures is possible. The characteristics of the AlN thin films were also evaluated using FT-IR spectra, XRD, and AFM images.

  • PDF

고분자전해질 연료전지용 바이폴라 플레이트의 다층 코팅의 증착 (Multi-layered Coating Deposited on PEMFC (Proton Exchange Membrane Fuel Cell) Bipolar Plates)

  • 윤영훈;정훈택;차인수;최정식;김동묵;정진호
    • 한국세라믹학회지
    • /
    • 제45권8호
    • /
    • pp.472-476
    • /
    • 2008
  • The surface region of commercial stainless steel 304 and 316 plates has been modified through deposition of the multi-layered coatings composed of titanium film ($0.1{\mu}m$) and gold film ($1-2{\mu}m$) by an electron beam evaporation method. XRD patterns of the stainless steel plates deposited with conductive metal films showed the peaks of the external gold film and the stainless steel substrate. Surface microstructural morphologies of the stainless steel bipolar plates modified with multi-layered coatings were observed by AFM and FE-SEM images. The stainless steel plates modified with $0.1{\mu}m$ titanium film and $1{\mu}m$ gold film showed microstructure of grains of under 100 nm diameter. The external surface of the stainless steel plates deposited with $0.1{\mu}m$ titanium film and $2{\mu}m$ gold film represented somewhat grain growth of Au grains in FE-SEM image. The electrical resistance and water contact angle of the stainless steel bipolar plates modified with multi-layered coatings were examined with the thickness of the gold film.

$O_{2}$ re-annealing에 의한 식각된 PZT 박막의 식각 damage 개선 (Recovery of Etching Damage of the etched PZT Thin Films With $O_{2}$ Re-Annealing.)

  • 강명구;김경태;김창일;장의구;이병기
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 춘계학술대회 논문집 반도체재료
    • /
    • pp.8-11
    • /
    • 2001
  • In this study. the recovery of plasma induced damage in the etched PZT thin film with $O_2$ re-annealing have been investigated. The PZT thin films were etched as a function of $Cl_2/Ar$ and additive $CF_4$ into $Cl_{2}(80%)/Ar(20)%$. The etch rates of PZT thin films were $1600\dot{A}/min$ at $Cl_{2}(80%)/Ar(20)%$ gas mixing ratio and $1970\dot{A}/min$ at 30 % additive $CF_4$ into $Cl_{2}(80%)/Ar(20)%$. The etched profile of PZT films was obtained above 70 by SEM. In order to recovery properties of PZT thin films after etching, the etched PZT thin films were re-annealed at various temperatures in $O_2$ atmosphere. From the hysteresis curves, ferroelectrical properties are improved by $O_2$ re-annealing process. The improvement of ferroelectric behavior at annealed sample is consistent with the increase of the (100) and (200) PZT phase revealed by x-ray diffraction (XRD). From XPS analysis, intensity of Pb-O, Zr-O and Ti-O peak are increased and the chemical residue peak is reduced by $O_2$ re-annealing. The ferroelectric behavior consistent with the dielectric nature of TixOy is recovered by $O_2$ recombination during rapid thermal annealing process. From AFM images, it shows that the surface roughness of re-annealed sample after etching is improved.

  • PDF

Damage studies on irradiated tungsten by helium ions in a plasma focus device

  • Seyyedhabashy, Mir mohammadreza;Tafreshi, Mohammad Amirhamzeh;bidabadi, Babak Shirani;Shafiei, Sepideh;Nasiri, Ali
    • Nuclear Engineering and Technology
    • /
    • 제52권4호
    • /
    • pp.827-834
    • /
    • 2020
  • Damage of tungsten due to helium ions of a PF device was studied. The tungsten was analyzed by SEM and AFM after irradiation. SEM revealed fine bubbles of helium atoms with diameters of a few nanometers, which join and form larger bubbles and blisters on the surface of tungsten. This observation confirmed the results of molecular dynamics simulation. SEM analysis after etching of the irradiated surface indicated cavities with depth range of 35-85 nm. The average fluence of helium ion of the PF device was calculated about 5.2 × 1015 cm-2 per shot, using Lee code. Energy spectrum of helium ions was estimated using a Thomson parabola spectrometer as a function of dN/dE ∝ E-2.8 in the energy range of 10-200 keV. The characteristics of helium ion beam was imported to SRIM code. SRIM revealed that the maximum DPA and maximum helium concentration occur in the depth range of 20-50 nm. SRIM also showed that at depth of 30 nm, all of the tungsten atoms are displaced after 20 shots, while at depth of higher than 85 nm the destruction is insignificant. There is a close match between SRIM results and the measured depths of cavities in SEM images of tungsten after etching.

응집 및 정밀여과공정의 강화역세정시 NaOCl에 따른 PTFE막 투과능 회복과 막오염층 변화 (Permeability recovery and changes in fouling layer characteristics of PTFE membrane by enhanced backwash cleaning using NaOCl during coagulation and microfiltration)

  • 강선구;박근영;곽동근;김윤중;권지향
    • 상하수도학회지
    • /
    • 제29권2호
    • /
    • pp.233-241
    • /
    • 2015
  • Polytetrafluoroethylene (PTFE) membrane has high resistance to chlorine, which is a great advantages in chemical cleaning to recover water flux during membrane processes in drinking water systems. A humic kaolin water with approximately 4 mg/L of DOC and 10 NTU of turbidity was prepared as a feed water. Coagulation pretreatment with or without settling was applied. The coagulation with settling showed the greatest water production. The reduced flux was effectively recovered by NaOCl cleaning, i.e., 21% recovery by 50 mg/L of NaOCl cleaning and 49% recovery by 500 mg/L NaOCl cleaning. The images of SEM and AFM analyses were corresponded to the water flux variation. However, when the floc was accumulated on the membrane surfaces, the efficiency of NaOCl cleaning was substantially limited. In addition, dynamic contact angle became greater after cleaning, which indicates changes in characteristics of fouling layer such as surface hydrophobicity. Proper cleaning technologies during enhanced backwash using NaOCl would expand application of PTFE membranes in drinking water systems.

Racemic and enantiomeric effect of tartaric acid on the hydrophilicity of polysulfone membrane

  • Sharma, Nilay;Purkait, Mihir Kumar
    • Membrane and Water Treatment
    • /
    • 제7권3호
    • /
    • pp.257-275
    • /
    • 2016
  • The enantiomeric and racemic effects of tartaric acid (TA) on the properties of polysulfone (PSn) ultrafiltration membranes were studied in terms of morphology and hydrophilicity (HPCT) of membrane. Asymmetric membranes were prepared by direct blending of polyvinyl pyrrolidone (PVP) with D-TA and DL-TA in membrane casting solution. FTIR analysis was done for the confirmation of the reaction of PVP and TA in blended membranes and plain PSn membranes. Scanning electron microscope (SEM), field emission scanning electron microscope (FESEM) and atomic force microscopy (AFM) were used for analyzing the morphology and structure of the resulting membranes. The membranes were characterized in terms of pure water flux (PWF), hydraulic permeability and HPCT. PWF increased from $52L/m^2h$ to $79.9L/m^2h$ for plain and D-TA containing PSn membrane, respectively. Water contact angle also found to be decreased from $68^{\circ}$ to $55^{\circ}$. In Additionally, permeation and rejection behavior of prepared membranes was studied by bovine serum albumin (BSA) solution. A considerable increase in BSA flux (from $19.1L/m^2h$ for plain membrane to $32.1L/m^2h$ for D-TA containing membrane) was observed. FESEM images affirm that the pore size of the membranes decreases and the membrane permeability increases from 0.16 to 0.32 by the addition of D-TA in the membrane. D-TA increases the HPCT whereas; DL-TA decreases the HPCT of PSn membrane. PVP (average molecular weight of 40000 Da) with D-TA (1 wt%) gave best performance among all the membranes for each parameter.

CVD를 이용해 증착한 III-V 화합물 보론 포스파이드의 물성분석에 관한 연구 (A Study on the Physical Characteristics of III-V Compound Boron Phosphide using CVD)

  • 홍근기;김철주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.1
    • /
    • pp.332-335
    • /
    • 2004
  • Boron Phosphide films were deposited on(III) Si substrate at $650^{\circ}C$, by the reaction of $B_2H_6$ with $PH_3$ using CVD. $N_2$ was employed as carrier gas. The optimal gas rates were 20 ml/min for $B_2H_6$, 60 ml/min for $PH_3$ ml/min and $1{\ell}/min$ for $N_2$. The films were annealed for 1hour in $N_2$ ambient at $550^{\circ}C$ and measured. The measurement of AFM shows that the average surface roughness is each $10.108{\AA}$ and $29.626{\AA}$. So, we could know every commonplace thing. The measurement of XRD shows that the films have the preferred orientation of(1 0 1). From SEM images, we could see that Boron Phosphide is showed of a structure, which is grain size, which is grain boundary size. Also, the measurement of AES is shown the films have $B_{13}P_2$ Stoichiometry. From WDX See that ingredient is detected each Boron and Phosporus. So, we could see that deposited BP thin film. In this study, we obtained the BP thin film by deposited in atmosphere pressure, and known to applicate as microwave absorbtion material of BP thin film.

  • PDF

Imprinted Graphene-Starch Nanocomposite Matrix-Anchored EQCM Platform for Highly Selective Sensing of Epinephrine

  • Srivastava, Juhi;Kushwaha, Archana;Singh, Meenakshi
    • Nano
    • /
    • 제13권11호
    • /
    • pp.1850131.1-1850131.19
    • /
    • 2018
  • In this paper, an electrochemical sensor for epinephrine (EP), a neurotransmitter was developed by anchoring molecularly imprinted polymeric matrix (MIP) on the surface of gold-coated quartz crystal electrode of electrochemical quartz crystal microbalance (EQCM) using starch nanoparticles (Starch NP) - reduced graphene oxide (RGO) nanocomposite as polymeric format for the first time. Use of EP in therapeutic treatment requires proper dose and route of administration. Proper follow-up of neurological disorders and timely diagnosis of them has been found to depend on EP level. The MIP sensor was developed by electrodeposition of starch NP-RGO composite on EQCM electrode in presence of template EP. As the imprinted sites are located on the surface, high specific surface area enables good accessibility and high binding affinity to template molecule. Differential pulse voltammetry (DPV) and piezoelectrogravimmetry were used for monitoring binding/release, rebinding of template to imprinted cavities. MIP-coated EQCM electrode were characterized by contact angle measurements, AFM images, piezoelectric responses including viscoelasticity of imprinted films, and other voltammetric measurements including direct (DPV) and indirect (using a redox probe) measurements. Selectivity was assessed by imprinting factor (IF) as high as 3.26 (DPV) and 3.88 (EQCM). Sensor was rigorously checked for selectivity in presence of other structurally close analogues, real matrix (blood plasma), reproducibility, repeatability, etc. Under optimized conditions, the EQCM-MIP sensor showed linear dynamic ranges ($1-10{\mu}M$). The limit of detection 40 ppb (DPV) and 290 ppb (EQCM) was achieved without any cross reactivity and matrix effect indicating high sensitivity and selectivity for EP. Hence, an eco-friendly MIP-sensor with high sensitivity and good selectivity was fabricated which could be applied in "real" matrices in a facile manner.

산소 후열처리가 Ga2O3/4H-SiC 이종접합 다이오드의 온도에 따른 전기적 특성에 미치는 영향 분석 (Influence of Oxygen Annealing on Temperature Dependent Electrical Characteristics of Ga2O3/4H-SiC Heterojunction Diodes)

  • 정승환;이형진;이희재;변동욱;구상모
    • 반도체디스플레이기술학회지
    • /
    • 제21권4호
    • /
    • pp.138-143
    • /
    • 2022
  • We analyzed the influence of post-annealing on Ga2O3/n-type 4H-SiC heterojunction diode. Gallium oxide (Ga2O3) thin films were deposited by radio frequency (RF) sputtering. Post-deposition annealing at 950℃ in an Oxygen atmosphere was performed. The material properties of Ga2O3 and the electrical properties of the diodes were investigated. Atomic Force Microscopy (AFM), X-Ray Diffraction and Scanning Electron Microscope (SEM) images show a significant increase in the roughness and crystallinity of the O2-annealed films. After Oxygen annealing X-ray Photoelectron Spectroscopy (XPS) shows that the atomic ratio of oxygen increases which is related to a decrease in oxygen vacancy within the Ga2O3 film. The O2-annealed diodes exhibited higher on-current and lower leakage current. Moreover, the ideality factor, barrier height, and thermal activation energy were derived from the current-voltage curve by increasing the temperature from 298 - 434K.