• 제목/요약/키워드: AFLC

검색결과 41건 처리시간 0.021초

AFLC 제어기에 의한 유도전동기 드라이브의 고성능 제어 (High Performance Control of Induction Motor Drive with AFLC Controller)

  • 고재섭;최정식;이정호;김종관;박기태;박병상;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.216-218
    • /
    • 2006
  • The paper is proposed high performance control of induction motor drive with adaptive fuzzy logic controller(AFLC). Also, this paper is proposed speed control of induction motor using AFLC and estimation of speed using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The proposed control algorithm is applied to induction motor drive system controlled AFLC and ANN controller. And this paper is proposed the results to verify the effectiveness of the AFLC and ANN controller.

  • PDF

AFLC 제어기에 의한 유도전동기의 ANN 센서리스 제어 (ANN Sensorless Control of Induction Motor with AFLC Controller)

  • 최정식;고재섭;정동화
    • 전력전자학회논문지
    • /
    • 제11권3호
    • /
    • pp.224-232
    • /
    • 2006
  • 본 논문은 적응 퍼지 제어기에 의한 유도전동기의 ANN 센서리스 제어를 제시한다. 또한 AFC를 사용하여 속도를 제어하고 ANN 제어기를 이용하여 속도를 추정한다. 신경회로망의 역전파 알고리즘은 전동기 속도의 실시간 추정에 사용된다. 요구상태 변수와 실제 상태는 실제 상태 변수는 요구값에 일치하기 위해서 역전파 알고리즘에 의해 회전자 속도를 조절한다. 제시된 제어 알고리즘 AFLC와 ANN 제어기는 유도전동기 드라이브 시스템 제어에 적용된다. 그리고 본 논문은 AFLC와 ANN 제어기의 우수한 결과를 나타낸다.

AFLC에 의한 유도전동기 드라이브의 ANN 센서리스 제어 (ANN Sensorless Control of Induction Motor Dirve with AFLC)

  • 정동화;남수명
    • 조명전기설비학회논문지
    • /
    • 제20권1호
    • /
    • pp.57-64
    • /
    • 2006
  • 본 논문에서는 유도전동기의 벡터제어를 위한 ANN 센서리스 제어와 속도제어를 위한 AFLC를 제안하였다. AFLC 설계는 적응 메카니즘을 통해 퍼지 룰 베이스의 수정자를 갱신하여 실행할 수 있고 유도 전동기의 속도 추정을 위한 ANN 센서리스 제어는 BPA를 통해 수행하였다. 유도전동기의 지령속도와 실제속도는 BPA를 통해 그 오차를 줄일 수 있고, 이러한 알고리즘은 다른 전동기 드라이브에 적용이 용이하다. 본 논문에서 제시한 AFLC 및 ANN 제어의 응답특성을 분석하고 그 결과를 제시한다.

AFLC를 이용한 IPMSM 드라이브의 NN 파라미터 추정 (Neural Network Parameter Estimation of IPMSM Drive using AFLC)

  • 고재섭;최정식;정동화
    • 전기학회논문지
    • /
    • 제60권2호
    • /
    • pp.293-300
    • /
    • 2011
  • A number of techniques have been developed for estimation of speed or position in motor drives. The accuracy of these techniques is affected by the variation of motor parameters such as the stator resistance, stator inductance or torque constant. This paper is proposed a neural network based estimator for torque and stator resistance and adaptive fuzzy learning contrroller(AFLC) for speed control in IPMSM Drives. AFLC is chaged fuzzy rule base by rule base modifier for robust control of IPMSM. The neural weights are initially chosen randomly and a model reference algorithm adjusts those weights to give the optimum estimations. The neural network estimator is able to track the varying parameters quite accurately at different speeds with consistent performance. The neural network parameter estimator has been applied to slot and flux linkage torque ripple minimization of the IPMSM. The validity of the proposed parameter estimator and AFLC is confirmed by comparing to conventional algorithm.

신경회로망을 이용한 SVC용 적응 퍼지제어기의 설계 (Design of Adaptive Fuzzy Logic Controller for SVC using Neural Network)

  • 손종훈;황기현;김형수;박준호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계합동학술대회 논문집
    • /
    • pp.121-126
    • /
    • 2002
  • We proposed the design of SVC adaptive fuzzy logic controller(AFLC) using Tabu search and neural network. We tuned the gains of input-output variables of fuzzy logic controller(FLC) and weights of neural network using Tabu search. Neural network was used for adaptively tuning the output gain of FLC. The weights of neural network was learned from the back propagation algorithm in real-time. To evaluate the usefulness of AFLC, we applied the proposed method to single-machine infinite system. AFLC showed the better control performance than PD controller and GAFLC[8] for. three-phase fault in nominal load which had used when tuning AFLC. To show the robustness of AFLC, we applied the proposed method to disturbances such as three-phase fault in heavy and light load. AFLC showed the better robustness than PD controller and GAFLC[8].

  • PDF

다중 AFLC를 이용한 IPMSM 드라이브의 효율 최적화 제어 (Efficiency Optimization Control of IPMSM Drive using Multi AFLC)

  • 최정식;고재섭;정동화
    • 전기학회논문지P
    • /
    • 제59권3호
    • /
    • pp.279-287
    • /
    • 2010
  • Interior permanent magnet synchronous motor(IPMSM) adjustable speed drives offer significant advantages over induction motor drives in a wide variety of industrial applications such as high power density, high efficiency, improved dynamic performance and reliability. This paper proposes efficiency optimization control of IPMSM drive using adaptive fuzzy learning controller(AFLC). In order to optimize the efficiency the loss minimization algorithm is developed based on motor model and operating condition. The d-axis armature current is utilized to minimize the losses of the IPMSM in a closed loop vector control environment. The design of the current based on adaptive fuzzy control using model reference and the estimation of the speed based on neural network using ANN controller. The controllable electrical loss which consists of the copper loss and the iron loss can be minimized by the optimal control of the armature current. The minimization of loss is possible to realize efficiency optimization control for the proposed IPMSM. The optimal current can be decided according to the operating speed and the load conditions. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using AFLC. Also, this paper proposes speed control of IPMSM using AFLC1, current control of AFLC2 and AFLC3, and estimation of speed using ANN controller. The proposed control algorithm is applied to IPMSM drive system controlled AFLC, the operating characteristics controlled by efficiency optimization control are examined in detail.

Simulation of Domain Growth in Antiferroelctric Liquid Crystal Display

  • Jhun, Chul-Gyu;Ann, Sun-Mo;Moon, Sung-O;Lee, Gi-Dong;Yoon, Tae-Hoon;Kim, Jae-Chang
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.581-584
    • /
    • 2003
  • Most modeling about dynamic behavior of Antiferroelectric Liquid Crystal (AFLC) is limited to the hysteric characteristics of AFLC cells or thresholdless switching of frustrated AFLC cells. In this paper, domain growth of AFLC cells is modeled with extended bilayer model. When driving pulses that consist of a selection voltage, a bias voltage, and a reset voltage are applied to the AFLC cell, its dynamic behavior is simulated.

  • PDF

Tabu 탐색법과 신경회로망을 이용한 SVC용 적응 퍼지제어기의 설계 (Design of Adaptive Fuzzy Logic Controller for SVC using Tabu Search and Neural Network)

  • 손종훈;황기현;김형수;박준호;박종근
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권4호
    • /
    • pp.188-195
    • /
    • 2002
  • We proposed the design of SVC adaptive fuzzy logic controller(AFLC) using Tabu search and neural network. We tuned the gains of input-output variables of fuzzy logic controller(FLC) and weights of neural network using Tabu search. Neural network was used for adaptively tuning the output gain of FLC. The weights of neural network was learned from the back propagation algorithm in real-time. To evaluate the usefulness of AFLC, we applied the proposed method to single-machine infinite system. AFLC showed the better control performance than PD controller and GAFLS[10] for three-phase fault in nominal load which had used when tuning AFLC. To show the robustness of AFLC, we applied the proposed method to disturbances such as three-phase fault in heavy and light load. AFLC showed the better robustness than PD controller and GAFLC[10].

AFLC-FNN 제어기에 의한 IPMSM의 효율 최적화 제어 (Efficiency Optimization Control of IPMSM with AFLC-FNN Controller)

  • 최정식;고재섭;이정호;김종관;박기태;박병상;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.146-148
    • /
    • 2006
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications. This paper proposes efficiency optimization control of IPMSM drive using AFLC-FNN(Adaptive Fuzzy Learning Control Fuzzy Neural Network)controller. In order to maximize the efficiency in such applications, this paper proposes the optimal control method of the armature current. The optimal current can be decided according to the operating speed and the load conditions. This paper proposes speed control of IPMSM using AFLC-FNN and estimation of speed using ANN controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled AFLC-FNN controller, the operating characteristics controlled by efficiency optimization control are examined in detail.

  • PDF

적응 FLC-FNN 제어기에 의한 IPMSM의 효율 최적화 제어 (Efficiency Optimization Control of IPMSM with Adaptive FLC-FNN Controller)

  • 최정식;고재섭;정동화
    • 전기학회논문지P
    • /
    • 제56권2호
    • /
    • pp.74-82
    • /
    • 2007
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. This paper proposes efficiency optimization control of IPMSM drive using adaptive fuzzy learning control fuzzy neural network (AFLC-FNN) controller. In order to maximize the efficiency in such applications, this paper proposes the optimal control method of the armature current. The controllable electrical loss which consists of the copper loss and the iron loss can be minimized by the optimal control of the armature current. The minimization of loss is possible to realize efficiency optimization control for the proposed IPMSM. The optimal current can be decided according to the operating speed and the load conditions. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using AFLC-FNN controller. Also, this paper proposes speed control of IPMSM using AFLC-FNN and estimation of speed using ANN controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled AFLC-FNN controller, the operating characteristics controlled by efficiency optimization control are examined in detail.