• Title/Summary/Keyword: AES Algorithm

Search Result 183, Processing Time 0.02 seconds

AES Encryption Algorithm for safe PACS data Transmission in the Cloud Environment (클라우드 환경에서 안전한 PACS 데이터 전송을 위한 AES 암호화 알고리즘)

  • Cho, Young-bok;Woo, Sung-hee;Lee, Sang-ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.759-762
    • /
    • 2017
  • The proposed scheme is proposed secure transmission of fixed data and unstructured data among medical information transmitted in PACS. Unstructured data uses the AES encryption algorithm as sensitive data And transmitted using encrypted mosaic encryption techniques for the non-identification of medical images, which are regular data. In addition, we have experimented with increasing the key size for encryption. As a result, we did not notice any significant difference between 128 - bit size and 128 - key size even when encrypting the size of 196,256.

  • PDF

Criteria for Evaluating Cryptographic Algorithms, based on Statistical Testing of Randomness (AES(Advanced Encryption Standard) 평가에 대한 고찰)

  • 조용국;송정환;강성우
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.11 no.6
    • /
    • pp.67-76
    • /
    • 2001
  • In this paper, we investigate criteria for evaluating cryptographic strength based on randomness testing of the advanced encryption standard candidates, which have conducted by NIST(National Institute of Standards & Technology). It is difficult to prove that a given cryptographic algorithm meets sufficient conditions or requirements for provable security. The statistical testing of random number generators is one of methods to evaluate cryptographic strength and is based on statistical properties of random number generators. We apply randomness testing on several cryptographic algorithms that have not been tested by NIST and find criteria for evaluating cryptographic strength from the results of randomness testing. We investigate two criteria, one is the number of rejected samples and the other is the p-value from p-values of the samples.

Power-based Side-Channel Analysis Against AES Implementations: Evaluation and Comparison

  • Benhadjyoussef, Noura;Karmani, Mouna;Machhout, Mohsen
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.264-271
    • /
    • 2021
  • From an information security perspective, protecting sensitive data requires utilizing algorithms which resist theoretical attacks. However, treating an algorithm in a purely mathematical fashion or in other words abstracting away from its physical (hardware or software) implementation opens the door to various real-world security threats. In the modern age of electronics, cryptanalysis attempts to reveal secret information based on cryptosystem physical properties, rather than exploiting the theoretical weaknesses in the implemented cryptographic algorithm. The correlation power attack (CPA) is a Side-Channel Analysis attack used to reveal sensitive information based on the power leakages of a device. In this paper, we present a power Hacking technique to demonstrate how a power analysis can be exploited to reveal the secret information in AES crypto-core. In the proposed case study, we explain the main techniques that can break the security of the considered crypto-core by using CPA attack. Using two cryptographic devices, FPGA and 8051 microcontrollers, the experimental attack procedure shows that the AES hardware implementation has better resistance against power attack compared to the software one. On the other hand, we remark that the efficiency of CPA attack depends statistically on the implementation and the power model used for the power prediction.

Improved RFID Mutual Authentication Protocol using One-Time Pad and One-Time Random Number Based on AES Algorithm (OTP와 일회성 난수를 사용한 AES 알고리즘 기반의 개선된 RFID 상호 인증 프로토콜)

  • Yun, Tae-Jin;Oh, Se-Jin;Ahn, Kwang-Seon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.11
    • /
    • pp.163-171
    • /
    • 2011
  • Because RFID systems use radio frequency, they have many security problems such as eavesdropping, location tracking, spoofing attack and replay attack. So, many mutual authentication protocols and cryptography methods for RFID systems have been proposed in order to solve security problems, but previous proposed protocols using AES(Advanced Encryption Standard) have fixed key problem and security problems. In this paper, we analyze security of proposed protocols and propose our protocol using OTP(One-Time Pad) and AES to solve security problems and to reduce hardware overhead and operation. Our protocol encrypts data transferred between RFID reader and tag, and accomplishes mutual authentication by one time random number to generate in RFID reader. In addition, this paper presents that our protocol has higher security and efficiency in computation volume and process than researched protocols and S.Oh's Protocol. Therefore, our protocol is secure against various attacks and suitable for lightweight RFID tag system.

A Design of AES-based Key Wrap/Unwrap Core for WiBro Security (와이브로 보안용 AES기반의 Key Wrap/Unwrap 코어 설계)

  • Kim, Jong-Hwan;Jeon, Heung-Woo;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.7
    • /
    • pp.1332-1340
    • /
    • 2007
  • This paper describes an efficient hardware design of key wrap/unwrap algorithm for security layer of WiBro system. The key wrap/unwrap core (WB_KeyWuW) is based on AES (Advanced Encryption Standard) algorithm, and performs encryption/decryption of 128bit TEK (Traffic Encryption Key) with 128bit KEK (Key Encryption Key). In order to achieve m area-efficient implementation, two design techniques are considered; First, round transformation block within AES core is designed using a shared structure for encryption/decryption. Secondly, SubByte/InvSubByte blocks that require the largest hardware in AES core are implemented by using field transformation technique. As a result, the gate count of the WB_KeyWuW core is reduced by about 25% compared with conventional LUT (Lookup Table)-based design. The WB_KeyWuW con designed in Verilog-HDL has about 14,300 gates, and the estimated throughput is about $16{\sim}22-Mbps$ at 100-MHz@3.3V, thus the designed core can be used as an IP for the hardware design of WiBro security system.

Implementation of AES and ARIA algorithm with Secure Structure for Power Analysis using LFSR Masking

  • Kang, Young-Jin;Kim, Ki-Hwan;Lee, Hoon Jae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.1
    • /
    • pp.79-86
    • /
    • 2020
  • In this paper, we analyzed the case vulnerable to the power analysis attack of the ARIA algorithm and AES algorithm. Through this, we propose an algorithm with a safe structure for power analysis and prove through experiment. The proposed technique is a masking method using LFSR with a cyclic structure. To verify this, 1000, 2000, and 4000 power traces were collected, and the corresponding results are shown and proved. We used ATmega328 Chip for Arduino Uno for the experiment and mounted each algorithm. In order to measure the power consumption, a resistor was inserted and then proceeded. The analysis results show that the proposed structure has a safe structure for power analysis. In the future, we will study ways to lead to performance enhancement.

Experimental Analysis of the AES Encryption Algorithm (AES 암호화 알고리즘의 실험적 분석)

  • Oh, Ju-Young;Suh, Jin-Hyung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.2
    • /
    • pp.58-63
    • /
    • 2010
  • Cryptography is primarily a computationally intensive process. In this paper we expand AES scheme for analysis of computation time with four criteria, first is the compression of plain data, second is the variable size of block, third is the selectable round, fourth is the selective function of whole routine. We have tested our encryption scheme by c++ using MinGW GCC. Through extensive experimentations of our scheme we found that the optimal block size.

  • PDF

Implementation of Optimized 1st-Order Masking AES Algorithm Against Side-Channel-analysis (부채널 분석 대응을 위한 1차 마스킹 AES 알고리즘 최적화 구현)

  • Kim, Kyung-Ho;Seo, Hwa-Jeong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.125-128
    • /
    • 2019
  • 최근 사물인터넷 기술의 발전과 함께 하드웨어 디바이스에서 측정하는 센싱 데이터를 보호하기 위해 다양한 방식의 암호화 알고리즘을 채택하고 있다. 그 중 전 세계에서 가장 많이 사용하는 암호화 알고리즘인 AES(Advanced Encryption Standard) 또한 강력한 안전성을 바탕으로 많은 디바이스에서 사용되고 있다. 하지만 AES 알고리즘은 DPA(Differential Power Analysis), CPA(Correlation Power Analysis) 같은 부채널 분석 공격에 취약하다는 점이 발견되었다. 본 논문에서는 부채널 분석 공격대응방법 중 가장 널리 알려진 마스킹 기법을 적용한 AES 알고리즘의 소프트웨어 최적화 구현 기법을 제시한다.

An Analytical Model for Performance Prediction of AES on GPU Architecture (GPU 아키텍처의 AES 암호화 성능 예측 분석 모델)

  • Kim, Kyuwoon;Kim, Hyunwoo;Kim, Huijeong;Huh, Taeyoung;Jung, Sanghyuk;Song, Yong Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.89-96
    • /
    • 2013
  • The graphic processor unit (GPU) has been developed to process not only graphic data but also general system data. It shows a better performance than CPU in algorithm for 3D graphics and parallel program. In order to execute algorithm for CPU on GPU, we should understand about GPU architectures and rewrite program considering parallel processing capability and new memory model of GPU. For this reasons, a performance prediction model for the algorithm and its predicted performance through GPU system are required. These can predict problems in GPU application development or construct a performance evaluation standard for GPU. In this paper, we applied the AES encryption algorithms on our performance model and accomplished performance prediction with high accuracy under a heavy workload.

A Cryptoprocessor for AES-128/192/256 Rijndael Block Cipher Algorithm (AES-128/192/256 Rijndael 블록암호 알고리듬용 암호 프로세서)

  • 안하기;박광호;신경욱
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.3
    • /
    • pp.427-433
    • /
    • 2002
  • This paper describes a design of cryptographic processor that implements the AES(Advanced Encryption Standard) block cipher algorithm "Rijndael". To achieve high throughput rate, a sub-pipeline stage is inserted into the round transformation block, resulting that the second half of current round function and the first half of next round function are being simultaneously operated. For area-efficient and low-power implementation, the round block is designed to share the hardware resources in encryption and decryption. An efficient scheme for on-the-fly key scheduling, which supports the three master-key lengths of 128-b/192-b/256-b, is devised to generate round keys in the first sub-pipeline stage of each round processing. The cryptoprocessor designed in Verilog-HDL was verified using Xilinx FPGA board and test system. The core synthesized using 0.35-${\mu}{\textrm}{m}$ CMOS cell library consists of about 25,000 gates. Simulation results show that it has a throughput of about 520-Mbits/sec with 220-MHz clock frequency at 2.5-V supply.-V supply.