• Title/Summary/Keyword: AE events

Search Result 196, Processing Time 0.022 seconds

A Study on the Determination of Source Location in the Failure for Brittle Material (취성재료의 파괴과정에서 A.E.에 의한 파괴원 위치 결정에 관한 연구)

  • An, Byung-Kook;Lim, Han-Uk;Lee, Sang-Eun
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.197-208
    • /
    • 1999
  • The process of localization of cracks and movement of the fracture process zone(FPZ) was studied using the acoustic-emission(AE) techniques. The rate of AE events and sources of AE activity were studied for mortar and rock specimens loaded in uniaxial compression. A series of transducers could be used to detect and AE activity. Based on the time differences between detection of the event at different transducers, source of AE activity could be detected. The rate of AE events increased sharply before peak load. The highest rate occurred just after peak load was attained. The effective crack length estimated from the modified linear-elastic fracture mechanics seemed consistent with the optical and AE measurements.

  • PDF

Acoustic Emission Measurement on the Composite Material (CFRP) (복합재료 시험편에서의 AE 발생 특성에 관한 연구)

  • 최만용
    • Journal of the Korean Society of Safety
    • /
    • v.6 no.4
    • /
    • pp.21-27
    • /
    • 1991
  • Acoustic Emission was monitored during tensile test and loading-holding-unloa-ding cycle test for two types (notched and unnotched) of CFRP specimens. AE activities showed that the fiber breakage during tensile tests depended upon the specimen geometry. We obtained new AE parameter such as the ration (damage ratio= AE events during unloading test / AE events during loading test) and the felicity ratio from which we investigated dynamic fracture process of CFRP specimens. The damage ratio of AE events was shown to be a good indicator to distinguish the generated fracture mechanism, such as fiber breakage and delamination. Also, ultrasonic testing results after loading-holding-unloading cycle test were good agreement with AE test results to detect defects or fiber breakage.

  • PDF

Statistical Verification of Acoustic Emissions Detected during Polymerization Shrinkage of Resin Restoration in Dental Ring (치아/복합레진 수복부의 중합 수축시 검출된 음향방출의 통계적 검증)

  • Gu, Ja-Uk;Choi, Nak-Sam;Arakawa, Kazuo
    • Composites Research
    • /
    • v.23 no.6
    • /
    • pp.39-46
    • /
    • 2010
  • Acoustic emission (AE) signals are detected during the polymerization shrinkage of composite resin restoration in artificial dental ring according to various interfacial treatment conditions. AE amplitudes and the number of AE hit events were compared through the non-parametric statistics of Mann-Whitney method and Kruskal-Wallis method. The AE amplitudes detected from the PMMA and human tooth ring specimens were not significantly different according to adhesive conditions. The stainless steel ring specimen, meanwhile, had a difference in AE amplitude (p<0.05). The quantity of hit events for the human molar dentin specimens of the good bonding state was much less than that for the steel ring specimen but more than that for the PMMA ring specimen. For the same substrate, the better the bonding state, the less the AE hit events (p<0.05). The degree of marginal disintegration measured by SEM was proportional to the amount of AE hit events detected.

Interfacial fracture analysis of human tooth/composite resin restoration using acoustic emission (음향방출법을 이용한 치아/복합레진 수복재의 계면부 파괴해석)

  • Gu, Ja-Uk;Choi, Nak-Sam;Arakawa, Kazuo
    • Composites Research
    • /
    • v.22 no.6
    • /
    • pp.45-51
    • /
    • 2009
  • The marginal integrity at the composite resin-tooth interface has been analyzed in real time through acoustic emission (AE) monitoring during the polymerization shrinkage of composite resin subjected to the light exposure. It was found that AE signals were generated by the polymerization shrinkage. Most AE hit events showed a blast type signal having the principal frequency band of 100-200kHz. Bad bonding states were indicated by many hit events in the initial curing period of 1 minute with high contraction rate. The quantity of hit events for the human molar dentin specimen was much less than that for the steel ring specimen but more than that for the PMMA ring specimen. The better the bonding state, the less the AE hit events. The AE characteristics were related with the tensile crack propagation occurring in the adhesive region between the composite resin and the ring substrate as well as the compressive behavior of the ring substrate, which could be used for a nondestructive characterization of the marginal disintegrative fracture of the dental restoration.

Development of AE/MS monitoring system and its application (AE/MS 모니터링시스템개발과 적용연구)

  • Cheon, Dae-Sung;Jung, Yong-Bok;Park, Chan;Synn, Joong-Ho;Jang, Hyun-Ick
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.199-210
    • /
    • 2008
  • Acoustic emission(AE)/Microseimsic(MS) activities are low-energy seismic events associated with a sudden inelastic deformation such as the sudden movement of existing fractures, the generation of new fractures or the propagation of fractures. These events rapidly increase before major failure and happen within a given rock volume and radiate detectable seismic waves. The main difference between AE and MS signals is that the seismic motion frequencies of AE signals are higher than those of MS signals. As the failure of geotechnical structures usually happens as a high velocity and small displacement, it is not easy to determine the precursor and initiation stress level of failure in displacement detection method. To overcome this problem, AE/MS techniques for detection of structure failure and damage have recently adopt in civil engineering. In this study, AE/MS monitoring system, which consist of sensor, data acquisition and operation program, is constructed with domestic technology. To verify and optimize the developed system, we are now carrying out the field application at an underground research laboratory and the developed AE/MS monitoring will be used in detecting of seismic events with various scales.

  • PDF

Cracks evolution and multifractal of acoustic emission energy during coal loading

  • Kong, Xiangguo;Wang, Enyuan;He, Xueqiu;Liu, Xiaofei;Li, Dexing;Liu, Quanlin
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.107-113
    • /
    • 2018
  • Coal samples with different joints morphology were subjected to uniaxial compression experiments, cracks evolution was recorded by Nikon D5300 and acoustic emission (AE) energy signals were collected by AEwin Test for Express-8.0. During loading process, coal samples deformed elastically with no obvious cracks changes, then they expanded gradually along the trace of the original cracks, accompanied by the formation of secondary cracks, and eventually produced a large-scale fracture. It was more interesting that the failure mode of samples were all shear shape, whatever the original cracks morphology was. With cracks and damage evolution, AE energy radiated regularly. At the early loading stage, micro damage and small scale fracture events only induced a few AE events with less energy, while large scale fracture leaded to a number of AE events with more energy at the later stage. Based on the multifractal theory, the multifractal spectrum could explain AE energy signals frequency responses and the causes of AE events with load. Multifractal spectrum width (${\Delta}{\alpha}$), could reflect the differences between the large and small AE energy signals. And another parameter (${\Delta}f$) could reflect the relationship between the frequency of the least and greatest signals in the AE energy time series. This research is helpful for us to understand cracks evolution and AE energy signals causes.

Crack source location by acoustic emission monitoring method in RC strips during in-situ load test

  • Shokri, Tala;Nanni, Antonio
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.155-171
    • /
    • 2014
  • Various monitoring techniques are now available for structural health monitoring and Acoustic Emission (AE) is one of them. One of the major advantages of the AE technique is its capability to locate active cracks in structural members. AE crack locating approaches are affected by the signal attenuation and dispersion of elastic waves due to inhomogeneity and geometry of reinforced concrete (RC) members. In this paper, a novel technique is described based on signal processing and sensor arrangement to process multisensory AE data generated by the onset and propagation of cracks and is validated with experimental results from an in-situ load test. Considering the sources of uncertainty in the AE crack location process, a methodology is proposed to capture and locate events generated by cracks. In particular, the relationship between AE events and load is analyzed, and the feasibility of using the AE technique to evaluate the cracking behavior of two RC slab strips during loading to failure is studied.

Study on Characteristics of SCC and AE Signals for Weld HAZ of HT-60 Steel (HT-60강 용접부의 SCC및 AE신호특성에 관한 연구)

  • Na, Eui-Gyun;Yu, Hyo-Sun;Kim, Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.1
    • /
    • pp.62-68
    • /
    • 2001
  • In order to characterize the microscopic fracture behaviour of the weldment din stress corrosion cracking(SCC) phenomena, SCC and acoustic emission(AE) tests were carried out simultaneously and the correlation between mechanical paramenters obtained from SCC and AE tests was investigated. In the case of base metal, much more AE events were produced at -0.5V than at -0.8V because of the dissolution mechanism before the maximum load. Regardless of the applied voltages to the specimens, however, AE events decreased after the maximum load. In the case of weldment, lots of AE events with larger amplitude $range(40{\sim}100dB)$ were produced because of the singularities of weld HAZ in comparision to the base metal and post-weld heat-treated(PWHT) specimens. Numerous and larger cracks for the weldment were observed on the fractured surfaces by SEM examination. From these results, it was concluded that SCC for the weldment appeared most severely in synthetic seawater. Weld HAZ was softened by PWHT which also contributed to the reduced susceptibility to corrosive environment in comparison to the weldment.

  • PDF

AE Source Location and Evaluation of Artificial Defects (입공결함(人工缺陷)에 의한 AE발생원(發生原) 위치표정(位置標定)과 신호해석(信號解析))

  • Moon, Y.S.;Jung, H.K.;Joo, Y.S.;Lee, J.P.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.5 no.2
    • /
    • pp.22-33
    • /
    • 1986
  • The application and development of on-line monitoring technology of AE to surveillance of crack propagation will contribute to the structural integrity of reactor pressure vessel and piping system. This research has been performed in order to obtain the evaluation technology for source location of AE and the analysis for the AE signal of the welded specimen. AE is detected by 4-channels AE system during pressurization in small pressure vessels. The cracking of artificial defects can be accurately located and categorized in real time. The welded specimens have more events rate and higher amplitude than the weldless less specimens, and the events rate have a peak around the yield point and just before the failure under tensile test.

  • PDF

Characteristics of Acoustic Emission by Expansive Cement Induced Rock Fractures (팽창성 시멘트에 의한 암석균열시의 AE 특성)

  • 김교원
    • The Journal of Engineering Geology
    • /
    • v.8 no.3
    • /
    • pp.207-213
    • /
    • 1998
  • A study was conducted to determine the characteristics of acoustic emission(AE) events generated by the expansive cement induced rock fracturing. The dominant frequency and the maximum amplitude of the AE events are changed in relation to the rate of expansive pressure development in the hole. The dominant frequencies are in the range of 150∼230kHz for the small hole tests and 400∼500kHz for the large hole test. The maximum amplitudes are in the range of 0.015∼0.050cm/sec and 0.025∼0.064cm/sec, respectively. The fact that AE events of higher amplitude with higher frequency on the large hole test and lower amplitude with lower frequency on the small hole tests were detected, may strongly imply that the amount of energy consumed for a macro-crack in both tests may be similar. The expansive cement induced crack propagates stably without any distinguished event having higher amplitude and this implies that a macro-crack is a result of stable growth of micro cracks.

  • PDF