• Title/Summary/Keyword: AE Energy

Search Result 544, Processing Time 0.033 seconds

An Experimental Study on Measurement of Contact Force of Head/Disk Interface Using Acoustic Emission Sensor (AE 센서를 이용한 헤드/디스크 틈새의 텁촉력 측정에 관한 실험적 연구)

  • Kim, Ji-Hoon;Kim, Do-Hyung;Hwang, Pyung
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.278-284
    • /
    • 1998
  • In order to measure the real contact force between head and disk on hard disk drive quantitatively, many technique of measurement have been developed. Acoustic Emission Sensor can be used for detect elastic energy of head/disk contact as arms value. In this study using pencil breaking test is proposed for finding contact force using transfer function between calibrated force and real contact force. And real AE data of subambient and tripad slider shows bending and torsional mode and their energy are dominant in hard disk and head contact.

  • PDF

Application Study of the Predictive Pulse Control for Floor Heating System (바닥난방을 위한 부하 예측식 펄스제어 방식의 적용성 연구)

  • Cho, Sung-Hwan;Kim, Seong-Su;Kim, Yong-Bong;Na, Hee-Hyeong
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.167-175
    • /
    • 2007
  • A predictive pulse control strategy as a means of improving the energy efficiency of radiant floor heating systems is explored. Experiments at the apartment with floor heating system are conducted to assess and compare the energy performance of the predictive pulse control strategy with an existing conventional control strategy. The Results showed that new suggested PPCM( Predictive Pulse Control Method) was available to decrease the gap of $1{\sim}1.5^{\circ}C$ between maximum and minimum indoor temperature of each rooms. Therefore PPCM method was favor to radiant floor heating system which have a delay time of 10-20 minutes for heat transfer by floor layers.

  • PDF

Recognition of damage pattern and evolution in CFRP cable with a novel bonding anchorage by acoustic emission

  • Wu, Jingyu;Lan, Chengming;Xian, Guijun;Li, Hui
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.421-433
    • /
    • 2018
  • Carbon fiber reinforced polymer (CFRP) cable has good mechanical properties and corrosion resistance. However, the anchorage of CFRP cable is a big issue due to the anisotropic property of CFRP material. In this article, a high-efficient bonding anchorage with novel configuration is developed for CFRP cables. The acoustic emission (AE) technique is employed to evaluate the performance of anchorage in the fatigue test and post-fatigue ultimate bearing capacity test. The obtained AE signals are analyzed by using a combination of unsupervised K-means clustering and supervised K-nearest neighbor classification (K-NN) for quantifying the performance of the anchorage and damage evolutions. An AE feature vector (including both frequency and energy characteristics of AE signal) for clustering analysis is proposed and the under-sampling approaches are employed to regress the influence of the imbalanced classes distribution in AE dataset for improving clustering quality. The results indicate that four classes exist in AE dataset, which correspond to the shear deformation of potting compound, matrix cracking, fiber-matrix debonding and fiber fracture in CFRP bars. The AE intensity released by the deformation of potting compound is very slight during the whole loading process and no obvious premature damage observed in CFRP bars aroused by anchorage effect at relative low stress level, indicating the anchorage configuration in this study is reliable.

Evaluation of Fracture Toughness and the Micro-Fracture Mechanism of Porous Glass Composite by Using Acoustic Emission Technique (음향방출법을 이용한 글래스 복합재료의 파괴인성 및 미시파괴과정의 평가)

  • 정희돈;권영각;장래웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1388-1398
    • /
    • 1994
  • The fracture toughness and micro-fracture mechanisms of the porous glass and stainless fiber reinforced glass composite were evaluated by using the acoustice mission(AE) technique, fracture toughness $test(K_{IC})$ and the macroscopic observation of the specimen surface which was being under the loading. At initial portion of the loading, the AE signals with low energy, of which origins were considered as the micro-cracks formated at the crack tip, were emitted. With increasing the applied load, AE signals having higher energies were generated due to the coalesence of micro-cracks and fast fracture. Based on the such relationship between AE emission and loading condition, fracture toughness $K_{IAE}$ could be defined successfully be using the $K_I$ value corresponding to an abrupt change of the accumulated AE signal energies emitted during the fracture toughness test. In spite of its brittleness of glass material, nonlinear deformation behavior before maximum load was observed due to the formation of micro-cracks. Further, the stainless fiber may have attributed to the improvement of fracture toughness and the resistance to crack propagation comparing to noncomposited materials Finally, models of the micro-fracture process combined with the AE sources for the porous glass material and its composite were proposed paying attention to the micro-crack nucleation and its coalescence at the crack tip. Fiber fracture and its Pullout, deformation of fiber itself were also delinated from the model.

Acoustic Valve Leak Diagnosis and Monitoring System for Power Plant Valves (발전용 밸브누설 음향 진단 및 감시시스템)

  • Lee, Sang-Guk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.425-430
    • /
    • 2008
  • To verify the system performance of portable AE leak diagnosis system which can measure with moving conditions, AE activities such as RMS voltage level, AE signal trend, leak rate degree according to AE database, FFT spectrum were measured during operation on total 11 valves of the secondary system in nuclear power plant. AE activities were recorded and analyzed from various operating conditions including different temperature, type of valve, pressure difference, valve size and fluid. The results of this field study are utilized to select the type of sensors, the frequency band for filtering and thereby to improve the signal-to-noise ratio for diagnosis for diagnosis or monitoring of valves in operation. As the final result of application study above, portable type leak diagnosis system by AE was developed. The outcome of the study can be definitely applied as a means of the diagnosis or monitoring system for energy saving and prevention of accident for power plant valve. The purpose of this study is to verify availability of the acoustic emission in-situ monitoring method to the internal leak and operating conditions of the major valves at nuclear power plants. In this study, acoustic emission tests are performed when the pressurized temperature water and steam flowed through glove valve(main steam dump valve) and check valve(main steam outlet pump check valve) on the normal size of 12 and 18 ". The valve internal leak monitoring system for practical field was designed. The acoustic emission method was applied to the valves at the site, and the background noise was measured for the abnormal plant condition. To improve the reliability, a judgment of leak on the system was used various factors which are AE parameters, trend analysis, frequency analysis, voltage analysis and amplitude analysis of acoustic signal emitted from the valve operating condition internal leak.

  • PDF

Assessment of Fatigue Damage of Adhesively Bonded Composite -Metal Joints by Acousto-Ultrasonics and Acoustic Emission (음향초음파와 음향방출에 의한 복합재료-금속 접착접합부의 피로손상 평가)

  • Kwon, Oh-Yang;Lee, Kyung-Joo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.4
    • /
    • pp.425-433
    • /
    • 2001
  • A correlation between fatigue damage and acousto-ultrasonic (AU) parameters has been obtained from signals acquired during fatigue loading of the single-lap joints of a carbon-fiber reinforced plastic (CFRP) laminates and A16061 plate. The correlation showed an analogy to those representing the stiffness reduction $(E/E_0)$ of polymer matrix composites by the accumulation of fatigue damage. This has been attributed to the transmission characteristics of acoustic wave energy through bonded joints with delamination-type defects and their influence on the change of spectral content of AU signals. Another correlation between fatigue cycles and the spectral magnitude of acoustic emission (AE) signals has also been found during the final stage of fatigue loading. Both AU and AE can be applied almost in real-time to monitor the evolution of damage during fatigue loading.

  • PDF

Crack initiation mechanism and meso-crack evolution of pre-fabricated cracked sandstone specimens under uniaxial loading

  • Bing Sun;Haowei Yang;Sheng Zeng;Yu Yin;Junwei Fan
    • Geomechanics and Engineering
    • /
    • v.33 no.6
    • /
    • pp.597-609
    • /
    • 2023
  • The instability and failure of engineered rock masses are influenced by crack initiation and propagation. Uniaxial compression and acoustic emission (AE) experiments were conducted on cracked sandstone. The effect of the crack's dip on the crack initiation was investigated using fracture mechanics. The crack propagation was investigated based on stress-strain curves, AE multi-parameter characteristics, and failure modes. The results show that the crack initiation occurs at the tip of the pre-fabricated crack, and the crack initiation angle increases from 0° to 70° as the dip angle increases from 0° to 90°. The fracture strength kcr is derived varies in a U-shaped pattern as β increased, and the superior crack angle βm is between 36.2 and 36.6 and is influenced by the properties of the rock and the crack surface. Low-strength, large-scale tensile cracks form during the crack initiation in the cracked sandstone, corresponding to the start of the AE energy, the first decrease in the b-value, and a low r-value. When macroscopic surface cracks form in the cracked sandstone, high-strength, large-scale shear cracks form, resulting in a rapid increase in the AE energy, a second decrease in the b-value and an abrupt increase in the r-value. This research has significant theoretical implications for rock failure mechanisms and establishment of damage indicators in underground engineering.

A Study on Urban Energy Planning Process and Planning Support System for a Energy Saving Green City (친환경 도시에너지계획 프로세스 및 계획지원기술에 관한 연구)

  • Yeo, In-Ae;Yoon, Seong-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.502-505
    • /
    • 2012
  • This study suggested 'Environmental Friendly City Model' and 'Energy Planning Process' according to the increasing necessity of 'Energy Saving Green City and 3 technologies like (1)Urban Spatial Modeling, (2)Urban Energy Consumption, (3)Urban Energy Supply Planning technologies were suggested which are able to support sustainable urban energy planning'. The results are as follows. (1)E-GIS modeling system was suggested as a 'Planning Supporting System'. (2)Urban Energy Consumption Algorithm was systemized with planning information of E-GIS DB. (3)Urban Energy System Location was deduced by integrating E-GIS DB and ANN algorithm.

  • PDF

이온주입 에너지에 따른 Auger Si KLL Peak Shift 및 Ti 계열 화합물의 Chemical State 관찰

  • Heo, Sung;Park, Yoon-Baek;Min, Gyung-Yeol;Lee, Sun-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.83-83
    • /
    • 1999
  • 본 연구에서는 Auger Elecrtron Spectroscopy (AES) 장비를 이용하여 Silicone Wafer 표면에 BF 이온을 주입시킨 후 Dopping 농도 및 Implantation 에너지에 따른 Si KLL Peak의 변화를 관찰하였다. 또한 PVD Ti 계열 화학물의 시료에 대하여 Peak의 Shape 변화를 관찰하였다. 1)Dopping 농도 및 Implantation 에너지에 따른 Si KLL Peak의 변화 관찰 일반적으로 Silicone 기판에 Arsenic(3가)을 Dopping 하였을 경우, Si KLL Peak의 Kinetic Energy 값은 순수 Si Peak보다 더 작은 값으로 Shift 하며, Boron (5가)을 Dopping하였을 경우에는 더 큰 값으로 Shift 한다. 이론적으로 N-type Si의 에너지 차이는 약 1.0eV로 보고되어 있으며, AES를 이용하여 실험적으로 측정된 값은 약 0.6eV정도로 알려져 있다. 이러한 차이는 Dopping 농도에 따라 Valance Band의 에너지 값이 변화하기 때문이라고 알려져 있다. 본 연구에서는 BF2를 Si에 이온 주입하여 입사 에너지 및 dose 량에 따른 Si KLL Peak의 변화를 관찰하였다. 그림1과 같이 Si KLL Peak는 Implantation Energy가 작을수록 Kinetic Energy가 높은 곳으로 Shift 한다. 이는 LOw Energy로 이온 주입하면, Projected Range (Rp)가 High Energy로 이온 주입할 때보다 작기 때문이며, 이 결과를 Secondary Ion Mass Spectroscopy (SIMS) 및 TRIM simulation을 이용하여 확인하였다. 또한 표면에서의 전자 Density의 변화와 Implantation energy와의 관계를 시료의 표면에서 반사되어 나오는 전자의 에너지 손실(Reflected Electron Energy Loss Spectroscopy:REELS)을 통하여 고찰하였다. 2) PVD Ti 계열화합물의 시료에 대한 peak의 shape 가 변화하며, TiL3M23V (Ti2) 및 TiL3M23M23 (Til) Peak의 Intensity Ratio가 변화한다. 따라서 본 연구에서는 그림 2와 같이 Ti 결합 화합물에서의 Ti Auger Peak의 특성 에너지 값과 Peak Shape를 관찰하여, AES를 이용하여 Ti 계열의 화합물에 대한 Chemical state 분석의 가능성을 평가하였다.

  • PDF