• 제목/요약/키워드: ADME

검색결과 26건 처리시간 0.022초

RI-Biomics 분야의 실무전문가 역량강화 방안연구 (A Research on the Empowerment Plan for Specialists in RI-Biomics Field)

  • 신우호;박태진;박상현;염유선
    • 방사선산업학회지
    • /
    • 제8권3호
    • /
    • pp.161-168
    • /
    • 2014
  • Increasing utilization of radiation and RI (Radioisotope) in nuclear industry including non-power area has achieved sustainable development of radiation industry. Industries are no longer confined by a single technology or abilities but expanded for application gradually. RI-Biomics fields are one of the convergence technology that is recognized on a high-tech industry. Unlike the conventional industry, RI-Biomics field needs to various specialists to perform related task. There is no domestic training program to educate the whole process. This study aims to suggest the plan for improvement of practical skills for specialists in RI-Biomics through development of our training program. For this purpose, we have first investigated the opinion about classification scheme from experts and then analyzed the results in order to reflecting our training program. Based on analyzed results, conformity assessment was executed to organize curriculum through status of constructed device and instructor in domestic. Our training program was performed jointly with KAERI (Korea Atomic Energy Research Institute). RI-Biomics center is prepared with facilities of overall experiment to improve quality of education. Due to the fact that specialists have routine task, we organized a five-day short course to reflect temporal difficulties. We performed a trial operation to 6 participants in RI-Biomics field. Through the survey for the specialists who participated in the program, we evaluated the efficiency of our training program. The results showed that participants were satisfied with the organized curriculum and educational materials. Therefore, our program is expected to be utilized as basic research data to develop feasible program for policy development and to improve practical skills in RI-Biomics.

In Silico Analysis of Potential Antidiabetic Phytochemicals from Matricaria chamomilla L. against PTP1B and Aldose Reductase for Type 2 Diabetes Mellitus and its Complications

  • Hariftyani, Arisvia Sukma;Kurniawati, Lady Aqnes;Khaerunnisa, Siti;Veterini, Anna Surgean;Setiawati, Yuani;Awaluddin, Rizki
    • Natural Product Sciences
    • /
    • 제27권2호
    • /
    • pp.99-114
    • /
    • 2021
  • Type 2 diabetes mellitus (T2DM) and its complications are important noncommunicable diseases with high mortality rates. Protein tyrosine phosphatase 1B (PTP1B) and aldose reductase inhibitors are recently approached and advanced for T2DM and its complications therapy. Matricaria chamomilla L. is acknowledged as a worldwide medicinal herb that has many beneficial health effects as well as antidiabetic effects. Our research was designed to determine the most potential antidiabetic phytochemicals from M. chamomilla employing in silico study. 142 phytochemicals were obtained from the databases. The first screening employed iGEMdock and Swiss ADME, involving 93 phytochemicals. Finally, 30 best phytochemicals were docked. Molecular docking and visualization analysis were performed using Avogadro, AutoDock 4.2., and Biovia Discovery Studio 2016. Molecular docking results demonstrate that ligand-protein interaction's binding affinities were -5.16 to -7.54 kcal/mol and -5.30 to -12.10 kcal/mol for PTP1B and aldose reductase protein targets respectively. In silico results demonstrate that M. chamomilla has potential antidiabetic phytochemical compounds for T2DM and its complications. We recommended anthecotulide, quercetin, chlorogenic acid, luteolin, and catechin as antidiabetic agents due to their binding affinities against both PTP1B and aldose reductase protein. Those phytochemicals' significant efficacy and potential as antidiabetic must be investigated in further advanced research.

Potential of Hanjeli (Coix lacryma-jobi) essential oil in preventing SARS-CoV-2 infection via blocking the Angiotensin Converting Enzyme 2 (ACE2) receptor

  • Diningrat, Diky Setya;Sari, Ayu Nirmala;Harahap, Novita Sari;Kusdianti, Kusdianti
    • Journal of Plant Biotechnology
    • /
    • 제48권4호
    • /
    • pp.289-303
    • /
    • 2021
  • Covid-19 is an ongoing pandemic as we speak in 2022. This infectious disease is caused by the SARS-CoV-2 virus, which infects cells by binding to the angiotensin-converting enzyme 2 (ACE2) receptor on the cell surface. Thus, strategies that inhibit the binding of SARS-CoV-2 to the ACE2 receptor can stop this contagion. Hanjeli (Coix lacryma-jobi) essential oil contains many bioactive compounds, including dodecanoic acid; tetradecanoic acid; 7-Amino-8-imino-2-(2-imino-2H-chromen-3-yl); and 1,5,7,10-tetraaza-phen-9-one. These compounds suppress viral replication and may prevent Covid-19. Accordingly, this study assessed whether, these four limonoid compounds can block the ACE2 receptor. To this end, their physicochemical properties were predicted using Lipinski's "rule of five" on the SwissADME website, and their toxicity was assessed using the online tools ProTox and pkCSM. Additionally, their interactions with the ACE2 receptor were predicted via molecular docking using Autodock Vina. All the four compounds satisfied the "rule of five" and tetradecanoic acid was predicted to have a higher affinity than the comparison compound remdesivir and the original ligand of ACE2. Molecular docking results suggested that the compounds from hanjeli essential oil interact with the active site of the ACE2 receptor similarly as the original ligand and remdesivir. In conclusion, hanjeli essential oil contains compounds predicted hinder the interaction of SARS-CoV-2 with the ACE2 receptor. Accordingly, our data may facilitate the development of a phytomedical strategy against SARS-CoV-2 infection.

네트워크 약리학적 분석에 의한 소세포폐암에 대한 청대의 항암기전 연구 (Identifying the Anti-Cancer Effect of Indigo Naturalis in Small Cell Lung Cancer Based on Network Pharmacological Analysis)

  • 김영훈;정우진;정광희;김윤숙;안원근
    • 동의생리병리학회지
    • /
    • 제36권6호
    • /
    • pp.229-234
    • /
    • 2022
  • Lung cancer is the leading cause of cancer-related deaths worldwide. Indigo Naturalis (IN) is a dark blue powder obtained by processing leaves or stems of indigo plants, its anticancer effects have been reported in several studies. However, the pharmacological mechanism of IN in small cell lung cancer (SCLC) is not elucidated. In this study, to investigate the anticancer efficacy of IN for SCLC, we presented potential active ingredients, SCLC-related targets, and pharmacological mechanisms of IN that are expected to have anticancer activity for SCLC using a network pharmacological analysis. The phytochemical compounds of IN have been collected through TCMSP, SymMap, or HPLC documents. The active ingredients of IN such as indirubin, indican, isatin, and tryptanthrin were selected through ADME parameters or literature investigations for each compound. Using the Compounds, Disease-Target associations Databases, 124 common targets of IN and SCLC were obtained. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway enrichment analysis was carried out. GO biological processes are associated with response to xenobiotic stimulus, positive regulation of protein phosphorylation, regulation of mitotic cell cycle, and regulation of apoptotic signaling pathway. KEGG disease pathways included Gastric cancer, Bladder cancer, SCLC, and Melanoma. The main anticancer targets of the IN for SCLC were analyzed in 14 targets, including BCL2, MYC, and TP53. In conclusion, the results of this study based on the network pharmacology of IN can provide important data for the effective prevention and treatment of SCLC.

Exploring the Potential of Natural Products as FoxO1 Inhibitors: an In Silico Approach

  • Anugya Gupta;Rajesh Haldhar;Vipul Agarwal;Dharmendra Singh Rajput;Kyung-Soo Chun;Sang Beom Han;Vinit Raj;Sangkil Lee
    • Biomolecules & Therapeutics
    • /
    • 제32권3호
    • /
    • pp.390-398
    • /
    • 2024
  • FoxO1, a member of the Forkhead transcription factor family subgroup O (FoxO), is expressed in a range of cell types and is crucial for various pathophysiological processes, such as apoptosis and inflammation. While FoxO1's roles in multiple diseases have been recognized, the target has remained largely unexplored due to the absence of cost-effective and efficient inhibitors. Therefore, there is a need for natural FoxO1 inhibitors with minimal adverse effects. In this study, docking, MMGBSA, and ADMET analyses were performed to identify natural compounds that exhibit strong binding affinity to FoxO1. The top candidates were then subjected to molecular dynamics (MD) simulations. A natural product library was screened for interaction with FoxO1 (PDB ID-3CO6) using the Glide module of the Schrödinger suite. In silico ADMET profiling was conducted using SwissADME and pkCSM web servers. Binding free energies of the selected compounds were assessed with the Prime-MMGBSA module, while the dynamics of the top hits were analyzed using the Desmond module of the Schrödinger suite. Several natural products demonstrated high docking scores with FoxO1, indicating their potential as FoxO1 inhibitors. Specifically, the docking scores of neochlorogenic acid and fraxin were both below -6.0. These compounds also exhibit favorable drug-like properties, and a 25 ns MD study revealed a stable interaction between fraxin and FoxO1. Our findings highlight the potential of various natural products, particularly fraxin, as effective FoxO1 inhibitors with strong binding affinity, dynamic stability, and suitable ADMET profiles.

Active Phytochemicals of Indian Spices Target Leading Proteins Involved in Breast Cancer: An in Silico Study

  • Ashok Kumar Krishnakumar;Jayanthi Malaiyandi;Pavatharani Muralidharan;Arvind Rehalia;Anami Ahuja;Vidhya Duraisamy;Usha Agrawal;Anjani Kumar Singh;Himanshu Narayan, Singh;Vishnu Swarup
    • 대한화학회지
    • /
    • 제68권3호
    • /
    • pp.151-159
    • /
    • 2024
  • Indian spices are well known for their numerous health benefits, flavour, taste, and colour. Recent Advancements in chemical technology have led to better extraction and identification of bioactive molecules (phytochemicals) from spices. The therapeutic effects of spices against diabetes, cardiac problems, and various cancers has been well established. The present in silico study aims to investigate the binding affinity of 29 phytochemicals from 11 Indian spices with two prominent proteins, BCL3 and CXCL10 involved in invasiveness and bone metastasis of breast cancer. The three-dimensional structures of 29 phytochemicals were extracted from PubChem database. Protein Data Bank was used to retrieve the 3D structures of BCL3 and CXCL10 proteins. The drug-likeness and other properties of compounds were analysed by ADME and Lipinski rule of five (RO5). All computational simulations were carried out using Autodock 4.0 on Windows platform. The proteins were set to be rigid and compounds were kept free to rotate. In-silico study demonstrated a strong complex formation (positive binding constants and negative binding energy ΔG) between all phytochemicals and target proteins. However, piperine and sesamolin demonstrated high binding constants with BCL3 (50.681 × 103 mol-1, 137.76 × 103 mol-1) and CXCL10 (98.71 × 103 mol-1, 861.7 × 103 mol-1), respectively. The potential of these two phytochemicals as a drug candidate was highlighted by their binding energy of -6.5 kcal mol-1, -7.1 kcal mol-1 with BCL3 and -6.9 kcal mol-1, -8.2 kcal mol-1 with CXCL10, respectively coupled with their favourable drug likeliness and pharmacokinetics properties. These findings underscore the potential of piperine and sesamolin as drug candidates for inhibiting invasiveness and regulating breast cancer metastasis. However, further validation through in vitro and in vivo studies is necessary to confirm the in silico results and evaluate their clinical potential.