• Title/Summary/Keyword: AChE inhibition test

Search Result 26, Processing Time 0.038 seconds

In Vitro AChE Inhibition Tests of Insecticides Using Electric eel and Housefly AChE (전기뱀장어 및 집파리 AChE를 이용한 살충제의 In Vitro AChE 저해 시험)

  • 이시혁;이준호;조광연
    • Korean journal of applied entomology
    • /
    • v.31 no.2
    • /
    • pp.122-132
    • /
    • 1992
  • Experiments were conducted to establish an in vitro AChE inhibition test system to evaluate the potency of AChE inhibition of new chemical compounds. For a fixed time inhibition test, optimal inhibition (incubation) time to evaluate their AChE inhibition potency was 10 min. for AChE inhibitors such as DFP, DDVP, and paraoxon. The concentration of new chemical compounds with an ester group for evaluation of their inhibition potency was 10 $\mu$M under 10 min. preincubation conditions. However, the stepwise inhibition test with higher concentrations seemed to be needed for other chemical compounds. For a progressive inhibition test to calculate inhibition constants such as $K_d$, $K_3$ and $K_i$, extremely low $K_d(1.3\times10-^85.6\times10^{-7})$ and $K_3$(0. 21-0.27 $min^{-1}$) were observed under lagged preincubation time (0.8-13.3 min) and low in¬hibitor concentrations $(1\times10-^92\times10-^6M)$. However, this method seemed to be useful for comparison of AChE inhibition potency among inhibitors. Differences in inhibition potency among DFP, paraoxon, and KH501 were due to the differences in $K_d$, in other words, differences in affinities between inhibitors and AChEs. Therefore, AntiChE screening should consist of two steps. The first step is to evaluate the potency of AChE inhibition based on $I_50$ valuse obtained from fixed time inhibition tests. The second step is to study inhibition patterns and characteristics of chemical compounds selected in the first step.

  • PDF

Development of Multi-Residue Methods for Carbamate Pesticides by the Enzyme Inhibition Test (효소 저해법을 이용한 Carbamate계 농약의 다성분 잔류분석법 개발)

  • Kim, Jung-Ho
    • Journal of Environmental Science International
    • /
    • v.17 no.12
    • /
    • pp.1325-1330
    • /
    • 2008
  • This study was carried out with the detection for multiresidue of the carbamate pesticide such as carbaryl and cabofuran by enzyme-inhibition method. The check time for determination of acetylcholinesterase(AChE) activity was selected at 60 sec. The AChE activity in chicken brain determined by the Ellman's method was $162{\mu}$mol/min/g protein. $I_{50}$ for AChE by carbamate pesticide with wet kit was 0.169mg/L of carbaryl and 0.089mg/L of cabofuran, respectively. The incubation time for enzyme kit with substrate kit was 30min for determination of AChE activity. Enzyme kit with substrate kit was stable at $4^{\circ}C\;and\;25^{\circ}C$ for 5 days. Limit detection concentration of carbaryl with dry kit for AChE was 0.05mg/L. The dry kit such as wet kit applied Enzyme-Inhibition(EI) method with AChE was confirmed the multi residue method to detect the carbamate pesticides.

Toxicological Test Methods and AChE Inhibition of Organophosphorus Acaricides of Twospotted Spider Mite, Tetranychus urticae (점박이응애의 독성 시험방법과 유기인계 살비제 AChE 활성저해에 관한 연구)

  • 김도익;이승찬
    • Korean journal of applied entomology
    • /
    • v.31 no.1
    • /
    • pp.1-6
    • /
    • 1992
  • These studies were carried out to compare toxicological test methods of two spotted spider mite, Tetranychus urticae Koch,; and to investigate relationship between in vivo resistant level of highly acaricide-selected population, and in vitro insensitivity of the AChE in the same population to carbophenothion and ethion. The slide dip method (CV = 8.7%) was of more accuracy and suitability than that of the leaf dip method(CV=12.2%) and leaf disc method (CV= 13.6 %) in determination of the resistant levels of twospotted spider mite to acaricides. The slide dip method also had the advantages of simple treatment with different populations on a slide at the same time, standardization of post-treatement conditions and living plants exclud¬ed from the test. Even though the topical application method(CV =8.1 %) showed high accuracy, it had the demerits of the much time consuming, need of expensive equipment and difficulty of test manipulation. For a limited time, the 22nd successive carbophenothion-selected population of two-spotted spider mite showed 156- and 128-fold resistant levels to carbophenothion and ethion(both alPs), respectively. However, the 24th successive ethion-selected population revealed 64.1- and 65-fold resistant levels to ethion and carbophenothion, respectively. In the inhibition of AChE activity, the carbophenothion-selected population showed 3.3- and 2.7-fold insensitivity in AChE activity to carbophenothion and ethion, respectively. Likewise, the ethion -selected population exhibited 3- and 2.6-fold insensitivity in AChE activity to carbophenothion and ethion, respectively, as compared with that of susceptible population. As a result, a good relation was recognized between in vivo resistance to organophosphorous acaricides and in vitro insensitivity of the AChE to corresponding inhibitors.

  • PDF

Inhibitory effect of Capparis zeylanica Linn. on acetylcholinesterase activity and attenuation of scopolamine-induced amnesia

  • Chaudhary, Amrendra Kumar;Solanki, Ruchi;Singh, Vandana;Singh, Umesh Kumar
    • CELLMED
    • /
    • v.2 no.2
    • /
    • pp.19.1-19.6
    • /
    • 2012
  • $Capparis$ $zeylanica$ Linn. a 'Rasayana' drug is used for its memory enhancing effects in the traditional Ayurvedic system of medicine. The aim of this study was to evaluate acetylcholinesterase (AChE) inhibitory and memory enhancing activities of $Capparis$ $zeylanica$ Linn. The$in-vitro$ and $ex-vivo$ models of AChE inhibitory activity were used along with Morris water maze test to study the effect on memory in rats. The anticholinesterase effect of methanolic and aqueous extracts of $Capparis$ $zeylanica$ was measured by spectrophotometric Ellman method at 0.1, 0.3, 1.0, 3.0, 10 and 30 mg/ml and brain monoamine oxidase (MAO-A and MAO-B) activity was assessed by Naoi's method. The results $in-vitro$ and $ex-vivo$ AChE assay revealed that methanolic and aqueous extracts of $Capparis$ $zeylanica$ inhibit AChE activity, whereas these extracts did not alter MAO activity at any concentration tested as compared to moclobemide and L-deprenyl. The results indicate that $Capparis$ $zeylanica$ improves scopolamine-induced memory deficits through inhibition of AChE activity, and not by direct MAO inhibition.

Aucklandiae Radix Ameliorates Scopolamine-induced Memory Impairment in Mice (Scopolamine 유발 기억력 손상 마우스 모델에서 목향(木香)의 기억력 개선 및 항산화 효과)

  • Park, Na-eun;Han, Da-young;Kim, Sang-ho;Chung, Dae-kyoo
    • Journal of Oriental Neuropsychiatry
    • /
    • v.28 no.2
    • /
    • pp.123-136
    • /
    • 2017
  • Objectives: The objective of this study is to investigate the anti-amnesic effects of AR, Aucklandiae Radix, ground powder on scopolamine (Sco)-induced memory impairment in mice (C57BL/6) through its favorable acetylcholine (ACh) and acetylcholinesterase (AChE) activity, Choline acetyltransferase (ChAT) mRNA expression, and antioxidant effect. Methods: Six groups, a total of 20 intact or 100 Sco treated mice, were selected based on their body weights and were used in this study. Half of the mice in each group were used for the passive avoidance task test and the measurements of hippocampus ACh content, AChE activity and ChAT mRNA expression. The remaining half of the mice in each group were used for the Morris water maze test and cerebral antioxidant defense system measurement. Results: Marked decreases in step-through latency times in the passive avoidance task test and increases in escape latency times in the Morris water maze test were observed with decreases in the hippocampus ACh content and ChAT mRNA expression, and increases in the hippocampal AChE activities, as a result of Sco intraperitoneal treatment, in the present study. In addition, destruction of the cerebral cortex antioxidant defense systems was observed in Sco control mice as compared with intact vehicle control mice. However, 28 days of continuous oral pre-treatment with AR ground powder at doses of 400, 200 and 100 mg/kg markedly and dose-dependently inhibited the Sco treatment-related amnesia. Conclusions: The results prove that oral administration of AR ground powder reduces Sco-induced memory impairment. This is because it can preserve ACh, related to ChAT mRNA expression, cause AChE inhibition, and activate the cerebral antioxidant defense system.

Anti-amnesic and Antioxidant Effect of Bunsimgieum (Fenxinqiyin) on Scopolamine-Induced Memory Impairment in Mice (Scopolamine 유발 기억력 손상 마우스 모델에서 분심기음의 항산화 및 기억력 감퇴 억제 효과)

  • Han, Da-Young;Yu, Ok-Cheol;Kim, Sang-Ho;Chung, Dae-kyoo
    • Journal of Oriental Neuropsychiatry
    • /
    • v.30 no.3
    • /
    • pp.221-235
    • /
    • 2019
  • Objectives: The purpose of this study was to confirm the anti-amnesic effects of Bunsimgieum (BSGE) through its favorable acetylcholine (ACh) and, acetylcholinesterase (AChE) activity, choline acetyltransferase (ChAT) mRNA expressions, and antioxidant effect on scopolamine (Sco)-induced memory impairment in C57BL/6 mice. Methods: Six groups, a total of 20 intact or 100 Sco-induced mice were used in this study, based on their body weight. Half of each group underwent passive avoidance tests and the measurement of hippocampus AChE activity, ACh content, and ChAT mRNA expression, The remaining half of each group underwent a Morris water-maze test and antioxidant defense system measurement as well. Results: Significant reductions in the step-through latency times from the passive avoidance test and reductions in the escape latency times from the Morris water-maze test were observed with increases of hippocampal AChE activities and, reductions in ACh contents and ChAT mRNA expression in hippocampus, as a result of Sco intraperitoneal treatment, in this study. Additionally, the increases in cerebral cortical MDA levels and, reductions in GSH contents, SOD activities, and CAT activities were demonstrated in the Sco control mice compared with the intact vehicle control mice, respectively. However, 28 days of consecutive oral pre-treatment of BSGE hot water extracts of 400, 200, and 100 mg/kg, respectively, markedly and dose-dependently inhibited Sco treatment-related amnesia. Conclusions: The results demonstrate that the oral administration of BSGE hot water extracts reduces Sco-induced memory impairment, through preserving ACh, related to ChAT mRNA expressions, causes AChE inhibition, and enhances the cerebral antioxidant defense system.

Anti-amnesic and Antioxidant Effect of Yeongkyekamjotanggayonggolmoryo Aqueous Extracts on Scopolamine-induced Memory Impairment in Mice (Scopolamine 유발 기억력손상 흰 쥐에서 영계감조탕가용골모려(笭桂甘棗湯加龍骨牡蠣)의 인지기능개선과 항산화 효과)

  • Kim, Dae-eok;Han, Da-young;Kim, Sang-ho;Chung, Dae-kyoo
    • Journal of Oriental Neuropsychiatry
    • /
    • v.29 no.3
    • /
    • pp.121-134
    • /
    • 2018
  • Objectives: The purpose of this in vivo study is to observe anti-amnesic effects of Yeongkyekamjotanggayonggolmoryo (YGYM), a novel mixed herbal prescription, Ossis Mastodi and Ostreae Testa added Yeongkyekamjo-tang, on scopolamine induced amnesia in C57BL/6 mice through acetylcholine (ACh) and acetylcholinesterase (AChE) activity, Choline acetyltransferase (ChAT) mRNA expression, and antioxidant effects. Methods: Six groups, total 20 intact or 100 Sco treated mice were used in this study after one week of acclimatization period. Half the animals were used for passive avoidance task tests and hippocampus ACh content, AChE activity, and ChAT mRNA expression were measured. The other half was subjected to an underwater maze test and then the cerebral cortex antioxidant defense system was measured. Results: In the passive avoidance experiment, there was significant decrease in residence time in the bright room and in the underwater maze test, escape latency to escape from the esophagus significantly increased compared with the normal control group. At the final sacrifice, ACh content and ChAT mRNA expression decreased, AChE activity increased, and cerebral cortical MDA increased GSH content, SOD and CAT activity in Sco control mice, as compared to intact vehicle control mice. However, these Sco treatment-related memory loss through AChE activation destroyed the cerebral cortex antioxidant defense system, and was inhibited dose-dependently by 28 days consecutive oral pretreatments of YGYM extracts 500, 250, 125 mg/kg. Conclusions: In the above results, YGYM extract that oral administration of YGYM extracts alleviates the antioxidant defense system, through preservation of ACh mediated by upregulation of ChAT mRNA expression, and increase of AChE inhibition and brain antioxidant defense systems.

Screeening of Natural Plant Resources with Acetylcholine esterase inhibitory activity and Effect on Scopolamine-induced Memory Impairment (천연식물자원으로부터 Acetylcholine esterase 저해 활성 탐색 및 인지기능에 미치는 영향)

  • Choi, Jang Won;Won, Mu-Ho;Joo, Han-Seung
    • Journal of agriculture & life science
    • /
    • v.45 no.6
    • /
    • pp.213-226
    • /
    • 2011
  • This study was performed to investigate the effect of essential oils and ethanolic extracts of approximately 650 plant species on acetylcholine esterase (AChE) enzyme activity using Ellman's colorimetric method in 96-well microplates. The results showed that the ethanolic extracts from twig of Sophora subprostrata, twig of Phellodendron amurense, seed of Corylopsis coreana, and essential oil (EO) from Citrus paradisi, Cupressus sempervirens, Ocimum basilicum, Pinus sylvestris and Rosmarinus officinalis inhibited more than 80% of AChE activity. Among these, EO from Pinus sylvestris, C. sempervirens and C paradisi exhibited higher values of AChE inhibitory activity, which were 75, 84 and 99% at a concentration of 50 ug/ml, respectively. Finally, EO from C paradisi (grapefruit, GEO) showed the highest inhibitory activity towards AChE, which showed 91% of inhibition at a concentration of 20 ug/ml. We also examined the anti-dementia effects of GEO in mouse by passive avoidance test and Morris water maze test. The model mouse (male, ICR) of dementia (negative control) was induced by administration of scopolamine (1 mg/kg body weight). The latency time of sample group administrated with GEO (100 mg/kg, p.o.) increased significantly as compared with negative control on passive avoidance test. There were significant recovery from the scopolamine-induced deficits on learning and memory in water maze test through daily administrations with GEO (100 mg/kg, p.o.). From these results, we conclude that GEO treatment might enhance the cognitive function, suggesting that the EO of C. paradis may be a potential candidate for improvement of perceptive ability and dementia.

Enhancing effect of Multiherb extracts HT008-1 on Memory and Cognitive Function (한약복합물 HT008-1의 인지기능 및 기억력 향상효과)

  • Seo, Joo-Hee;Woo, So-Young;Kim, Yun-Tai;Kim, Mi-Yeon;Jin, Zhen-Hua;Park, Young-Mi;Bu, Young-Min;Kim, Ho-Cheol
    • The Korea Journal of Herbology
    • /
    • v.22 no.4
    • /
    • pp.51-58
    • /
    • 2007
  • Objectives : Investigation of the memory and cognitive enhancing effect of HT008-1 in scopolamine induced amnesia mice. Methods : At 60 min before acquisition trials, HT008-1 (30, 100, 300 mg/kg p.o.) was administered, and 30 min later, mice were injected with scopolamin (1.0 mg/kg, i.p.). In the passive avoidance test, acquisition trials were carried out 30 min after a single scopolamine treatment. Retention trials were carried out 24h after acquisition trials. Y-maze test was carried out 30 min after a single scopolamine treatment. Spontaneous alternation behavior during an 8-min session was recorded. Inhibitory effects of HT008-1 (0.01, 0.1, 1.0 mg/ml) on AChE activity was measured. Result : HT008-1 ameliorated scopolamine-induced learning impairments and spatial cognitive function in passive avoidance and Y-maze test, respectively. Moreover HT008-1 showed a significant inhibitory effect on AChE activity. Discussion: This study presented that eMultiherb mixture HT008-1 enhanced learning memory and spatial cognitive function in scopolamine-induced amnesia mice. These results suggest that the effect of HT008-1 may be dependent on the inhibition of AChE activity.

  • PDF

Anti-amnesic Effect and Antioxidant Defense Systems of Yukmijihwang-tang on Scopolamine-induced Memory Impairment in Mice (Scopolamine 유발 건망증 마우스 모델에서 육미지황탕(六味地黃湯)의 기억력 개선 및 항산화 효과)

  • Seo, Young-Min;Han, Da-young;Kim, Sang-ho;Chung, Dae-kyoo
    • Journal of Oriental Neuropsychiatry
    • /
    • v.29 no.4
    • /
    • pp.207-221
    • /
    • 2018
  • Objectives: The objective of this study was to observe the anti-amnesic effects of Yukmijihwang-tang (YMJHT), on the scopolamine (Sco)-induced memory impairment in C57BL/6 mice through its favorable acetylcholine (ACh). Also, to observe acetylcholinesterase (AChE) activity, Choline acetyltransferase (ChAT) mRNA expressions, and antioxidant effect. Methods: Six groups, with a total of 20 normal and 100 Sco treated mice were selected based on their body weights after 1 week of acclimatization, were used in this study as follows. Half of the mice in each group were used for passive avoidance task tests and hippocampus ACh content, AChE activity and ChAT mRNA expression measurement, and the remaining half in each group used for Morris water maze test and measurement of cerebral antioxidant defense system. Results: Amnesia due to AChE activations and destroyed cerebral cortex antioxidant defense systems were markedly and dose-dependently inhibited after 28 days of continuous oral pre-treatment with YMJHT 400, 200 and 100 mg/kg, respectively. The overall effects of YMJHT 400 mg/kg were similar to those of tacrine 10 mg/kg. Conclusions: Based on the results, it was established that oral administration of YMJHT favorably alleviates Sco-induced memory impairment, through preservation of ACh, mediated by up-regulation of ChAT mRNA expressions and related AChE inhibition and augmentation of cerebral antioxidant defense system, at least in a condition of this experiment. The overall effects of YMJHT 400 mg/kg were similar to those of tacrine 10 mg/kg.