• Title/Summary/Keyword: ACSR conductor

Search Result 67, Processing Time 0.028 seconds

Assessment of Short-Time Characteristic ACSR-OC Conductor (ACSR-OC 전선의 단시간 특성 평가)

  • Lee, Joong-Kwan;Kim, Dong-Muyng;Yi, Sue-Muk
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1446-1448
    • /
    • 2002
  • The short-time permissible temperature of an overhead distribution line conductor is determined by the softening characteristics of ACSR-OC, ACSR AW/OC 160, typical conductors employed in the overhead distribution line. Transient heat transfer equation and Newton's cooling law were applied to analyze the heating and cooling effects of the insulating conductors, respectively, and the error of co-relation was calibrated after simulating the softening test to assess the short-time characteristic of the insulating conductor. In order to verify the softening characteristic, the conductors were tested with heat cycle. The test was totally carried out 200 cycles, and 1 cycle was to heat and cool at 1.1 times permissible current of the conductor, 1.15 times for 120 minutes, respectively. After heating, the tensile strength and surface of the conductor were observed. In case of ACSR-OC, as the result of 100 hour heating test, the tensile strength of the insulator was 0.8 times the initial value. This is equivalent to the value of the conductors which are used for 10 years at sites.

  • PDF

Effect of Tension and Wind Velocity on Temperature of ACSR Overhead Conductor (장력과 풍속이 ACSR 가공송전선의 온도에 미치는 영향)

  • Kim Shang-Shu;Kim Byung-Geol;Lee Dong-Il;Min Byung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.5
    • /
    • pp.480-485
    • /
    • 2006
  • A research was undertaken on the thermal properties and behavior of the conductors in a controlled chamber, which was designed to implement the outdoor air temperature, heat and wind conditions With ACSR $410mm^2$ overhead conductors, we measured the maximum temperature of the conductors and the temperature gradient from the core to the surface regions as a function of current, tension, wind velocity and outdoor air temperature. This test also provided a comparative analysis between the measured temperature values of conductors in the controlled chamber and the theoretical calculations of ANSI/IEEE at normal condition. There was not much influence of tension on the conductor temperature. However, the compactness of conductor wires increased with an increase in tension, which eventually increased the coefficient of effective thermal conductivity and, accordingly the conductor temperature was reduced more or less.

Change of Properties by Environment Conditions in Aged ACSR Overhead Conductor (환경적 요인에 의한 노후 가공송전선의 특성변화)

  • Kim Shang-Shu;Kim Byung-Geol;Jang Tae-In;Kang Ji-Won;Lee Dong-Il;Min Byung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.287-291
    • /
    • 2006
  • This paper describes mechanical and electric properties of ACSR $410\;mm^2$ conductor from many of older overhead conductor. Samples of conductors itemized two division according to operation sector, green area, salt and pollution area. Samples of conductors operated various environment conditions have undergone laboratory metallurigical investigation and tensile strength torsional ductility and electrical performance. The steel core were found to have retained their original properties to a large degree in both tensile strength and the number of turns to failure. On the other hand the aluminum conductor showed reductions in tensile strength. To determine the remaining useful life of aged conductor, an unacceptable deterioration level has to established for each diagnostic procedure.

ACSR Inner Corrosion Detection by Eddy Current Test Method (ACSR 가공지선의 부식 검출에 관한 연구)

  • Kang, Ji-Won;Jeong, Jae-Kee;Kang, Yeon-Woog;Kim, Jeong-Boo
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1935-1937
    • /
    • 1996
  • This paper deals with ACSR(Aluminum Conductor Steel Reinforced) inner corrosion detection using a detector which automatically runs on an ACSR transmission line and inspects the inner corrosion of the conductor by utilization of the nondestructive eddy current test. And the relationship between the corrosion grades and the tensile strength can be estimated by means of this test. According to corrosion appearance and development of ACSR, the impedance change of the eddy current coils is theoretically verified. And then specifications And performances of the detector are described. Experimental procedures and desirable test results are reported. In conclusion, this detector can realize the nondestructive detecting of an ACSR inner corrosion. Upgrading the maintenance effciency and improving the reliability of transmission line would be expected by this nondestructive test method.

  • PDF

ACSR Inner Corrosion Detection by Eddy Current Sensor (와전류센서를 이용한 ACSR 전선의 내부부식 검출)

  • 강연욱;강지원;양병모;정재기
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.1
    • /
    • pp.12-19
    • /
    • 1998
  • This paper deals with ACSR(Aluminum Conductor Steel Reinforced) inner corrosion detection using a detector which automatically runs on an ACSR distribution line and inspects the inner corrosion of the conductor by utilization of the nondestructive eddy current test. According to corrosion appearance and development of ACSR, the impedance change of the eddy current coils is theoretically verified. And then specifications and performances of the detector are described. Experimental procedures and desirable test results are reported. In conclusion, this detector can realize the nondestructive detecting of an ACSR inner corrosion. Upgrading the maintenance efficiency and improving the reliability of distribution line, whether is covered with insulating materials or not, would be expected by this nondestructive test method.method.

  • PDF

Application of Nano Coating to ACSR conductor for the Protection of Transmission lines against Solar Storms, Surface Flashovers, Corona and Over voltages

  • Selvaraj, D. Edison;Mohanadasse, K.;Sugumaran, C. Pugazhendhi;Vijayaraj, R.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2070-2076
    • /
    • 2015
  • Nano composite materials were multi-constituent combinations of nano dimensional phases with distinct differences in structure, chemistry and properties. Nano particles were less likely to create large stress concentrations and thereby can avoid the compromise of the material ductility while improve other mechanical properties. Corona discharge was an electrical discharge. The ionization of a fluid surrounding a conductor was electrically energized. This discharge would occur when the strength of the electric field around the conductor was high enough to form a conductive region, but not high enough to cause electrical breakdown or arcing to nearby objects. This paper shows all the studies done on the preparation of nano fillers. Special attention has given to the ACSR transmission line conductor, TiO2 nano fillers and also to the evaluation of corona resistance on dielectric materials discussed in detail. The measurement of the dielectric properties of the nano fillers and the parameters influencing them were also discussed in the paper. Corona discharge test reveals that in 0%N ACSR sample corona loss was directly proportional to the applied line voltage. No significant change in corona loss between 0%N and 1%N. When TiO2 nano filler concentration was increased up to 10%N fine decrement in corona loss was found when compared to base ACSR conductor, corona loss was decreased by 40.67% in 10%N ACSR sample. It was also found from the surface conditions test that inorganic TiO2 nano filler increases the key parameters like tensile strength and erosion depth.

Corrosion Detection of ACSR Power Lines Using Non-Destructive Test Method (비파괴 탐상에 의한 ACSR 전선의 결함 검출)

  • Kang, J.W.;Jang, T.I.;Min, B.W.;Kim, B.K.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1712-1714
    • /
    • 2001
  • This paper deals with the development and application of an inner corrosion detector for the ACSR(Aluminum Conductor Steel Reinforced) power lines. The detector runs on an ACSR power line and inspects the inner corrosion of the conductor using the technology of the nondestructive eddy current test. It is consists of an ECT sensor, signal processing units, a RF transmitter/receiver, and etc.. The experimental result through field tests shows the detector can efficiently find both the zinc and aluminum loss of ACSR power lines.

  • PDF

Development of Deterioration Detecting System for Aged ACSR-OC Conductors in HV Overhead Distribution Lines (고압 가공배전선의 노화된 ACSR-OC 도체에 대한 열화검출시스템 설계)

  • Kim, Sung-Duck;Lee, Seung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.232-235
    • /
    • 2000
  • Design and experiments of a nondestructive system to inspect deterioration of ACSR-OC (ACSR Outdoor Cross-linked Polyethylene Insulated Wire usually used in HV overhead distribution lines presented in this paper. ACSR-OC conductor built to pollutants air for a long period would be easily progress to corrode so that it may lead to the reduction of the effective cross section area of conductors. A fault diagnosis system consisting of a solenoid sensor, a constant current source with RF frequency signal processing unit and a motor driver/controller designed and implemented. This instrument can dot the sensor output variation due to deterioration corrosion, continuously. As a result, it was shown such corrosion detector can readily be utilized estimating the diameter change due to deterioration overhead distribution lines and in giving an warning or inform before severe aged conductor lead to fail.

  • PDF

Zinc Loss Detection in ACSR Power Lines using the Removable Type of Eddy Current Sensor (착탈형 와류센서를 이용한 ACSR전선의 아연손실량 검출)

  • Jang, T.I.;Jo, S.B.;Kang, J.W.;Kang, Y.W.;Yang, B.M.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1963-1965
    • /
    • 2000
  • This paper deals with a problem of detecting the inner corrosion of the ACSR(Aluminum Conductor Steel Reinforced) power lines using a detector which consists of an ECT(Eddy Current Test) sensor, a constant current service, a signal processing unit, and a RF transmitter/receiver unit. The detector runs on the ACSR transmission line and inspects the corrosion of the conductor using the technic of the nondestructive eddy current test. The experimental result shows this detector can efficiently find the zinc loss in ACSR power lines.

  • PDF

The Study on Mechanical and Thermal Properties of ACSR 480Rail Conductor with Various Defects (시공유형에 따른 ACSR 480Rail 가공송전선 접속개소의 기계적 및 열적 특성 연구)

  • Ahn, Sang-Hyun;Kim, Byong-Geol;Kim, Sang-Su;Sohn, Hong-Kwan;Park, In-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1297_1298
    • /
    • 2009
  • According to previous report, aged sleeves for old transmission lines have various defect such as biased installation or corrosion of steel sleeve. These defects occupied almost 50 percent of investigated aged sleeves. These defects can cause serious accidents such as rapid increasing of sag or falling out of overhead conductor from sleeves. Moreover, the defects have been limited power capacity of transmission line. This paper study on thermal behavior of ACSR 480Rail conductor and sleeve with various defect model. The detailed results were presented in the text.

  • PDF