• 제목/요약/키워드: ACI model

검색결과 228건 처리시간 0.034초

P-$\Delta$ 효과를 고려한 RC 기둥의 극한저항력 산정 (Ultimate Resisting Capacity of RC Columns Considering P-$\Delta$ Effect)

  • 곽효경;김진국;김한수
    • 한국전산구조공학회논문집
    • /
    • 제15권1호
    • /
    • pp.105-116
    • /
    • 2002
  • 이 논문에서는 철근콘크리트 장주의 극한저항력을 효과적으로 산정할 수 있는 설계 관계식이 제안되었다. 철근콘크리트 기둥의 거동은 여러 설계변수들의 영향을 받는데 특히 콘크리트의 강도, 철근비, 세장비 및 편심 등에 의해 크게 영향을 받으므로 설계식의 제안을 위해 위의 4가지 변수들을 변화시켜가며 철근콘크리트 기둥의 비선형 해석을 수행하였다. 콘크리트의 균열 등을 포함한 재료의 비선형성을 고려하기 위해 적층단면법이 사용되었으며, p-△ 효과를 구현하기 위하여 기하강성행렬이 고려되었다. 해석결과로부터 각 변수의 변화에 따른 철근콘크리트 기둥의 저항력의 변화를 비교하였으며 이를 토대로 회귀분석 모델을 제안하였다. 또한 회귀분석을 수행하여 철근콘크리트 장주의 극한저항력을 효과적으로 산정할 수 있는 회귀분석식을 제안하였고, 기존의 설계기준과 비교하여 제안식의 효율성을 검증하였다.

Redistribution of moments in reinforced high-strength concrete beams with and without confinement

  • Lou, Tiejiong;Lopes, Sergio M.R.;Lopes, Adelino V.
    • Structural Engineering and Mechanics
    • /
    • 제55권2호
    • /
    • pp.379-398
    • /
    • 2015
  • Confinement is known to have important influence on ductility of high-strength concrete (HSC) members and it may therefore be anticipated that this parameter would also affect notably the moment redistribution in these members. The correctness of this "common-sense knowledge" is examined in the present study. A numerical test is performed on two-span continuous reinforced HSC beams with and without confinement using an experimentally validated nonlinear model. The results show that the effect of confinement on moment redistribution is totally different from that on flexural ductility. The moment redistribution at ultimate limit state is found to be almost independent of the confinement, provided that both the negative and positive plastic hinges have formed at failure. The numerical findings are consistent with tests performed on prototype HSC beams. Several design codes are evaluated. It is demonstrated that the code equations by Eurocode 2 (EC2), British Standards Institution (BSI) and Canadian Standards Association (CSA) can well reflect the effect of confinement on moment redistribution in reinforced HSC beams but the American Concrete Institute (ACI) code cannot.

Experimental behavior and shear bearing capacity calculation of RC columns with a vertical splitting failure

  • Wang, Peng;Shi, Qing X.;Wang, Qiu W.;Tao, Yi
    • Earthquakes and Structures
    • /
    • 제9권6호
    • /
    • pp.1233-1250
    • /
    • 2015
  • The behavior of reinforced concrete (RC) columns made from high strength materials was investigated experimentally. Six high-strength concrete specimen columns (1:4 scale), which included three with high-strength transverse reinforcing bars and three with normal-strength transverse reinforcement, were tested under double curvature bending load. The effects of yielding strength and ratio of transverse reinforcement on the cracking patterns, hysteretic response, shear strength, ductility, strength reduction, energy dissipation and strain of reinforcement were studied. The test results indicated that all specimens failed in splitting failure, and specimens with high-strength transverse reinforcement exhibited better seismic performance than those with normal-strength transverse reinforcement. It also demonstrated that the strength of high-strength lateral reinforcing bars was fully utilized at the ultimate displacements. Shear strength formula of short concrete columns, which experienced a splitting failure, was proposed based on the Chinese concrete code. To enhance the applicability of the model, it was corroborated with 47 short concrete columns selected from the literature available. The results indicated that, the proposed method can give better predictions of shear strength for short columns that experienced a splitting failure than other shear strength models of ACI 318 and Chinese concrete codes.

프리스트레스트 콘크리트 구조물의 장기거동 해석 (Analysis of Long-Term Behaviors of Prestressed Concrete Structures)

  • 김운학;허만무;김태훈;최정호;신현목
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권2호
    • /
    • pp.113-119
    • /
    • 2002
  • In the prestressed concrete structures, stresses are gradually redistributed with time due to the creep and shrinkage of concrete and the stress relaxation of prestressed steel. In this study a numerical procedure and computer program is developed to analyze the behavior of prestressed concrete structures considering the time-dependent properties of material. It accounts for the aging, creep and shrinkage of concrete and the stress relaxation of prestressed steel. The structural model uses two dimensional plane frame elements with three nodal degree of freedom and is analyzed based on the finite element method. Member cross section can consist of concrete, reinforcement and prestressing steel. Two different set of equations for the prediction of time-dependent material properties of concrete are presented, which are ACI, CEB-FIP. Analytical studies for different examples of prestressed concrete structures have been performed to demonstrated the capabilities and practical applicabilities of the developed program.

Evaluation of shear capacity of FRP reinforced concrete beams using artificial neural networks

  • Nehdi, M.;El Chabib, H.;Said, A.
    • Smart Structures and Systems
    • /
    • 제2권1호
    • /
    • pp.81-100
    • /
    • 2006
  • To calculate the shear capacity of concrete beams reinforced with fibre-reinforced polymer (FRP), current shear design provisions use slightly modified versions of existing semi-empirical shear design equations that were primarily derived from experimental data generated on concrete beams having steel reinforcement. However, FRP materials have different mechanical properties and mode of failure than steel, and extending existing shear design equations for steel reinforced beams to cover concrete beams reinforced with FRP is questionable. This paper investigates the feasibility of using artificial neural networks (ANNs) to estimate the nominal shear capacity, Vn of concrete beams reinforced with FRP bars. Experimental data on 150 FRP-reinforced beams were retrieved from published literature. The resulting database was used to evaluate the validity of several existing shear design methods for FRP reinforced beams, namely the ACI 440-03, CSA S806-02, JSCE-97, and ISIS Canada-01. The database was also used to develop an ANN model to predict the shear capacity of FRP reinforced concrete beams. Results show that current guidelines are either inadequate or very conservative in estimating the shear strength of FRP reinforced concrete beams. Based on ANN predictions, modified equations are proposed for the shear design of FRP reinforced concrete beams and proved to be more accurate than existing equations.

Fragility assessment of shear walls coupled with buckling restrained braces subjected to near-field earthquakes

  • Beiraghi, Hamid
    • Steel and Composite Structures
    • /
    • 제33권3호
    • /
    • pp.389-402
    • /
    • 2019
  • Reinforced concrete walls and buckling restrained braces are effective structural elements that are used to resist seismic loads. In this paper, the behavior of the reinforced concrete walls coupled with buckling restrained braces is investigated. In such a system, there is not any conventional reinforced concrete coupling beam. The coupling action is provided only by buckling restrained braces that dissipate energy and also cause coupling forces in the wall piers. The studied structures are 10-, 20- and 30-story ones designed according to the ASCE, ACI-318 and AISC codes. Wall nonlinear model is then prepared using the fiber elements in PERFORM-3D software. The responses of the systems subjected to the forward directivity near-fault (NF) and ordinary far-fault (FF) ground motions at maximum considered earthquake (MCE) level are studied. The seismic responses of the structures corresponding to the inter-story drift demand, curvature ductility of wall piers, and coupling ratio of the walls are compared. On average, the results show that the inter-story drift ratio for the examined systems subjected to the far-fault events at MCE level is less than allowable value of 3%. Besides, incremental dynamic analysis is used to examine the considered systems. Results of studied systems show that, the taller the structures, the higher the probability of their collapse. Also, for a certain peak ground acceleration of 1 g, the probability of collapse under NF records is more than twice this probability under FF records.

Instantaneous and time-dependent flexural cracking models of reinforced self-compacting concrete slabs with and without fibres

  • Aslani, Farhad;Nejadi, Shami;Samali, Bijan
    • Computers and Concrete
    • /
    • 제16권2호
    • /
    • pp.223-243
    • /
    • 2015
  • Self-compacting concrete (SCC) can be placed and compacted under its own weight with little or no compaction. It is cohesive enough to be handled without segregation or bleeding. Modifications in the mix design of SCC may significantly influence the material's mechanical properties. Therefore, it is vital to investigate whether all the assumed hypotheses about conventional concrete (CC) are also valid for SCC structures. The aim in this paper is to develop analytical models for flexural cracking that describe in appropriate detail the observed cracking behaviour of the reinforced concrete flexural one way slabs tested. The crack width and crack spacing calculation procedures outlined in five international codes, namely Eurocode 2 (1991), CEB-FIP (1990), ACI318-99 (1999), Eurocode 2 (2004), and fib-Model Code (2010), are presented and crack widths and crack spacing are accordingly calculated. Then, the results are compared with the proposed analytical models and the measured experimental values, and discussed in detail.

Laboratory evaluation of roller compacted concrete containing RAP

  • Ahmadi, Amin;Gogheri, Mohammad K.;Adresi, Mostafa;Amoosoltani, Ershad
    • Advances in concrete construction
    • /
    • 제10권6호
    • /
    • pp.489-498
    • /
    • 2020
  • This paper investigates mechanical properties of roller compacted concrete (RCC) involving reclaimed asphalt pavement (RAP). In this way, a set of 276 cylindrical RCC specimens were prepared with different RAP sizes (i.e., fine, coarse & total) at various ratios (i.e., 10%, 20%, and 40%). Results reveal that incorporation of RAP decreases unconfined compressive strength (UCS), modulus of elasticity (E), and indirect tensile (IDT) strength of RCC. For each RAP size, a regression model was used to maximize RAP content while satisfying the UCS lower limit (27.6 Mpa) mentioned by ACI as a minimum requirement for RCC used in pavement construction. Moreover, UCS of RAP incorporated mixes, dissimilar to that of control mixes, was found to be sensitive and insensitive to the testing temperature and curing time after 7 days, respectively. The results also demonstrate that the higher amounts of RAP, the more flexibility in RCC is. This issue was also proved by the results of modulus of elasticity test. In addition, the toughness index (TI) shows that increase in RAP content leads to up to 43% increase in energy absorbance capacity of RCC.

경량골재를 사용한 알칼리 활성 슬래그 콘크리트의 역학적 특성 (Mechanical Properties of Alkali-Activated Slag-Based Concrete Using Lightweight Aggregates)

  • 양근혁;오승진;송진규
    • 콘크리트학회논문집
    • /
    • 제20권3호
    • /
    • pp.405-412
    • /
    • 2008
  • 친환경 콘크리트 개발의 의미와 한계를 파악하기 위해 알칼리 활성 경량콘크리트 6배합이 실험되었다. 무시멘트 친환경 결합재를 생산하기 위해 고로슬래그와 분말형 규산나트륨이 각각 모재와 활성화제로 이용되었다. 최대직경 13 mm의 경량골재가 굵은골재로 이용되었으며, 최대직경 5 mm의 경량골재가 천연모래의 용적비로 0, 15, 30, 50, 75 및 100% 치환되었다. 굳지 않은 콘크리트에서는 시간경과에 따른 슬럼프 변화가 측정되었으며, 굳은 콘크리트에서는 재령에 따른 압축강도 발현속도, 할렬인장강도, 파괴계수, 탄성계수, 응력-변형률 관계, 부착강도 및 건조수축 변형률이 측정되었다. 실험된 알칼리 활성 경량콘크리트의 압축강도는 경량 잔골재 치환율이 30% 이상일 때 급격히 감소하였다. 특히 사용된 경량골재의 불연속 입도분포는 콘크리트의 역학적 특성들을 나쁘게 만들었다. 알칼리 활성 경량콘크리트의 역학적 특성들은 보통포틀랜드시멘트 경량콘크리트를 위해 제시된 ACI 318-05 및 EC 2 설계기준 또는 Slate 등의 제안모델들과 비교되었다. 또한 측정된 응력-변형률 관계는 보통포틀랜드시멘트 경량콘크리트의 실험 결과에 근거하여 제시된 Tasnimi의 모델과 비교되었다. 실험 결과와 각 제안 모델들과의 비교는 잘 일치하지 않았다.

터널 덕트슬래브의 종방향 균열에 대한 원인 분석 사례 연구 (A Case Study on Cause Analysis for Longitudinal Crack of Duct Slab in Tunnel)

  • 박성우;박승수;황인백;차철준
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제16권5호
    • /
    • pp.19-28
    • /
    • 2012
  • 본 연구에서는 반횡류식 터널 덕트슬래브 하면 중앙부에 발생한 종방향 균열의 발생 원인을 분석하였다. 분석을 수행하기 위하여 균열이 발생 부위에 대한 상세한 외관조사, 비파괴조사 및 덕트슬래브의 처짐 측량을 실시하였고, 그 결과와 수치해석결과와의 상관관계 분석을 수행하여 균열 발생 원인에 대한 상세한 분석을 실시하였다. 균열 발생 원인의 주요 인자로 단부구속조건, 철근의 위치, 온도의 변화 및 건조수축 등으로 분류하였고, 콘크리트 라이닝을 우선적으로 타설하고 덕트슬래브를 철근 커플러로 강결하여 수개월 후에 별도 타설한 시공여건에 따라 발생할 가능성이 있는 요소들을 고려하여 수치해석을 실시하였다. 특히, 건조수축에 대한 분석을 위하여 ACI209 및 콘크리트 구조설계기준의 예측식과 기존 연구의 실험결과를 비교하여 시공당시의 건조수축 발생량을 예측하였고 구조해석을 수행하여 건조수축이 균열발생의 주요한 원인 중에 하나라는 결과를 도출하였다. 이에 따라 기존에 수행한 도로터널의 안전진단 결과를 덕트슬래브의 시공 방법에 따라 분류하고 균열발생 패턴을 분석하여 덕트슬래브가 있는 터널의 시공방법의 개선에 대한 제언을 하였다.