• Title/Summary/Keyword: ACC-deaminase

Search Result 51, Processing Time 0.025 seconds

Assessment of Plant Growth Promoting Activities of Phosphorus Solubilizing Bacteria

  • Walpola, Buddhi Charana;Song, June-Seob;Yoon, Min-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.1
    • /
    • pp.66-73
    • /
    • 2012
  • Plant growth promoting traits like production of indoleacetic acid (IAA), ammonia, hydrogen cyanide (HCN), siderophore, and like the enzyme activities of catalase, ACC deaminase, cellulase, chitinase and protease were assayed in vitro for twenty one phosphorus solubilizing bacteria isolated from soil isolates. Except SPP-5 and SPP-15 strains, all the other isolated strains produced IAA in various amounts of 10 to $23{\mu}g\;ml^{-1}$. All strains showed positive response for ammonia production and ACC deaminase activity implying that they are capable of growing in a N-free basal medium. Catalase activity was found to be superior in SPP-2, SPP-7, SPP-12 and SPP-17 compared to the other strains tested. HCN production was detected by 15 strains and among them SPP-9, SPP-15, SAph-11, and SAph-24 were found to be strong HCN producers. Except the isolates SPP-10, SPP-12, SPP-13 and SPP-14, all the other isolates produced more than 80% siderophore units. None of the strains showed cellulose and chitinase activity. SAph-8, SAPh-11, SAPh-24 and SPP-15 strains showed 35.84, 50.33, 56.64 and 34.78 U/ml protease activities, respectively. SPP-1, SPP-2, SPP-3, SPP-11, SPP-17, SPP-18, SAph-11 and SAph-24 strains showed positive response for all the tested plant growth promotion traits except cell wall degrading enzyme activities. According to the results, all the tested phosphorus solubilizing isolates could exhibit more than three or four plant growth promoting traits, which may promote plant growth directly or indirectly or synergistically. Therefore, these phosphorus solubilizing strains could be employed as bio-inoculants for agriculture soils.

Endophytic Bacteria Improve Root Traits, Biomass and Yield of Helianthus tuberosus L. under Normal and Deficit Water Conditions

  • Namwongsa, Junthima;Jogloy, Sanun;Vorasoot, Nimitr;Boonlue, Sophon;Riddech, Nuntavan;Mongkolthanaruk, Wiyada
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.11
    • /
    • pp.1777-1789
    • /
    • 2019
  • Drought is more concerned to be a huge problem for agriculture as it affects plant growth and yield. Endophytic bacteria act as plant growth promoting bacteria that have roles for improving plant growth under stress conditions. The properties of four strains of endophytic bacteria were determined under water deficit medium with 20% polyethylene glycol. Bacillus aquimaris strain 3.13 showed high 1-aminocyclopropane-1-carboxylate (ACC) deaminase production; Micrococcus luteus strain 4.43 produced indole acetic acid (IAA). Exopolysaccharide production was high in Bacillus methylotrophicus strain 5.18 while Bacillus sp. strain 5.2 did not show major properties for drought response. Inoculation of endophytic bacteria into plants, strain 3.13 and 4.43 increased height, shoot and root weight, root length, root diameter, root volume, root area and root surface of Jerusalem artichoke grown under water limitation, clearly shown in water supply at 1/3 of available water. These increases were caused by bacteria ACC deaminase and IAA production; moreover, strain 4.43 boosted leaf area and chlorophyll levels, leading to increased photosynthesis under drought at 60 days of planting. The harvest index was high in the treatment with strain 4.43 and 3.13 under 1/3 of available water, promoting tuber numbers and tuber weight. Inulin content was unchanged in the control between well-watered and drought conditions. In comparison, inulin levels were higher in the endophytic bacteria treatment under both conditions, although yields dipped under drought. Thus, the endophytic bacteria promoted in plant growth and yield under drought; they had outstanding function in the enhancement of inulin content under well-watered condition.

Complete genome sequence of Variovorax sp. PMC12, a plant growth-promoting bacterium conferring multiple stress resistance in plants (다양한 스트레스에 대한 식물의 내성을 유도하는 식물생육촉진 세균Variovorax sp. PMC12 균주의 유전체 염기서열)

  • Lee, Shin Ae;Kim, Hyeon Su;Kim, Yiseul;Sang, Mee Kyung;Song, Jaekyeong;Weon, Hang-Yeon
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.471-473
    • /
    • 2018
  • Variovorax sp. PMC12 is a rhizobacterium isolated from tomato rhizosphere and enhanced the plant resistance to abiotic and biotic stresses. Here we present the complete genome sequence of strain PMC12. The genome is comprised of two circular chromosomes harboring 5,873,297 bp and 1,141,940 bp, respectively. A total of 6,436 protein-coding genes, 9 rRNAs, 64 tRNAs, 3 ncRNAs, and 80 pseudogenes were identified. We found genes involved in 1-aminocyclopropane-1-carboxylate (ACC) deaminase, antioxidant activity, phosphate solubilization, and biosynthesis of proline and siderophore. Those genes may be related to capability of improving plant resistance to various stresses including salinity, cold temperature, and phytopathogen.

Halotolerant Plant Growth Promoting Bacteria Mediated Salinity Stress Amelioration in Plants

  • Shin, Wansik;Siddikee, Md. Ashaduzzaman;Joe, Manoharan Melvin;Benson, Abitha;Kim, Kiyoon;Selvakumar, Gopal;Kang, Yeongyeong;Jeon, Seonyoung;Samaddar, Sandipan;Chatterjee, Poulami;Walitang, Denver;Chanratana, Mak;Sa, Tongmin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.4
    • /
    • pp.355-367
    • /
    • 2016
  • Soil salinization refers to the buildup of salts in soil to a level toxic to plants. The major factors that contribute to soil salinity are the quality, the amount and the type of irrigation water used. The presented review discusses the different sources and causes of soil salinity. The effect of soil salinity on biological processes of plants is also discussed in detail. This is followed by a debate on the influence of salt on the nutrient uptake and growth of plants. Salinity decreases the soil osmotic potential and hinders water uptake by the plants. Soil salinity affects the plants K uptake, which plays a critical role in plant metabolism due to the high concentration of soluble sodium ($Na^+$) ions. Visual symptoms that appear in the plants as a result of salinity include stunted plant growth, marginal leaf necrosis and fruit distortions. Different strategies to ameliorate salt stress globally include breeding of salt tolerant cultivars, irrigation to leach excessive salt to improve soil physical and chemical properties. As part of an ecofriendly means to alleviate salt stress and an increasing considerable attention on this area, the review then focuses on the different plant growth promoting bacteria (PGPB) mediated mechanisms with a special emphasis on ACC deaminase producing bacteria. The various strategies adopted by PGPB to alleviate various stresses in plants include the production of different osmolytes, stress related phytohormones and production of molecules related to stress signaling such as bacterial 1-aminocyclopropane-1-carboxylate (ACC) derivatives. The use of PGPB with ACC deaminase producing trait could be effective in promoting plant growth in agricultural areas affected by different stresses including salt stress. Finally, the review ends with a discussion on the various PGPB activities and the potentiality of facultative halophilic/halotolerant PGPB in alleviating salt stress.

Effects of treatment of Enterobacter ludwigii SJR3 on growth of tomato plant and its expression of stress-related genes under abiotic stresses (비생물적 스트레스 환경에서 Enterobacter ludwigii SJR3 처리 시 토마토의 생장과 스트레스-관련 유전자의 발현)

  • Kim, Na-Eun;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.52 no.2
    • /
    • pp.148-156
    • /
    • 2016
  • This study examined effects of Enterobacter ludwigii SJR3 showing a high 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, on growth of tomato plant and its expression of stress-related genes under drought and salt stress. SJR3 strain was inoculated at $10^6cell/g$ soil to 4-week grown tomato plants, and drought and salt stresses were treated. After additional incubation for 1 week, root length, stem length, fresh weight and dry weight of tomato plants treated with SJR3 increased by 37.8, 37.2, 96.8 and 146.6%, respectively compared to those of uninoculated plants in drought stress environment, and they increased by 19.2, 25.4, 19.5, and 105.8%, respectively in salt stress environment. Proline content in tomato leaves increased significantly under stress conditions as one of a protecting substance against stresses, but proline contents in tomato treated with SJR3 decreased by 62.1 and 54.1%, respectively. Relative expression of genes encoding ACC oxidase, ACO1 and ACO4, ethylene response factor genes ERF1 and ERF4, and some other stress-related genes were examined from tomato leaves. Compared to the non-stressed tomato, expressions of all stress-related genes increased significantly in the stressed tomato, but gene expressions in the inoculated tomato were similar to those of no-stressed control tomato. Therefore, E. ludwigii SJR3 may play an important role in mitigating drought and salt stress in plants, and can increase productivity of crops under various abiotic stresses.

Microbiome of Halophytes: Diversity and Importance for Plant Health and Productivity

  • Mukhtar, Salma;Malik, Kauser Abdulla;Mehnaz, Samina
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • Saline soils comprise more than half a billion hectares worldwide. Thus, they warrant attention for their efficient, economical, and environmentally acceptable management. Halophytes are being progressively utilized for human benefits. The halophyte microbiome contributes significantly to plant performance and can provide information regarding complex ecological processes involved in the osmoregulation of halophytes. Microbial communities associated with the rhizosphere, phyllosphere, and endosphere of halophytes play an important role in plant health and productivity. Members of the plant microbiome belonging to domains Archaea, Bacteria, and kingdom Fungi are involved in the osmoregulation of halophytes. Halophilic microorganisms principally use compatible solutes, such as glycine, betaine, proline, trehalose, ectoine, and glutamic acid, to survive under salinity stress conditions. Plant growth-promoting rhizobacteria (PGPR) enhance plant growth and help to elucidate tolerance to salinity. Detailed studies of the metabolic pathways of plants have shown that plant growth-promoting rhizobacteria contribute to plant tolerance by affecting the signaling network of plants. Phytohormones (indole-3-acetic acid and cytokinin), 1-aminocyclopropane-1-carboxylic acid deaminase biosynthesis, exopolysaccharides, halocins, and volatile organic compounds function as signaling molecules for plants to elicit salinity stress. This review focuses on the functions of plant microbiome and on understanding how the microorganisms affect halophyte health and growth.

Isolation and Characterization of the Plant Growth Promoting Rhizobacterium, Arthrobacter scleromae SYE-3 on the Yam Growth (식물성장촉진근권미생물 Arthrobacter scleromae SYE-3의 분리 및 Yam (Dioscorea japonica Thunb.) 성장에 미치는 영향 연구)

  • Hong, Sun Hwa;Kim, Ji Seul;Sim, Jun Gyu;Lee, Eun Young
    • KSBB Journal
    • /
    • v.31 no.1
    • /
    • pp.58-65
    • /
    • 2016
  • In this study, Arthrobacter scleromae SYE-3, which was isolated from indigenous plant in a subtropical region, Neigeria, with plant growth promoting activity was evaluated to determine the optimal culture condition. A bacterial strain SYE-3 had the IAA productivity ($89.15{\pm}0.36mg/L$) and ACC deaminase activity ($0.20{\pm}0.06$ at 72 hours). Also, optimal culture conditions such as temperature and pH of strain SYE-3 were $20^{\circ}C$ and 10 in LB medium, respectively. Strain SYE-3 had up to 3% salt tolerance in the LB medium. Plant growth promoting ability of strain SYE-3 using yam (Dioscorea japonica Thunb.) was evaluated. As a result, strain SYE-3 had showed very powerful effect on the increase of the shoot length and root biomass of yam (190.0% and 282.41% increase for 112 days, respectively). These results indicated that Arthrobacter scleromae SYE-3 can serve as a promising microbial resource for the biofertilizers of subtropical crops.

Isolation of Bacillus sp. SHL-3 from the Dry Soil and Evaluation of Plant Growth Promoting Ability

  • Hong, Sun Hwa;Kim, Ji Seul;Sim, Jun Gyu;Lee, Eun Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.1
    • /
    • pp.36-43
    • /
    • 2015
  • Excess use of chemical fertilizer causes soil acidification and accumulation of salt, and thus might bring to desertification of soil. To overcome this problem, it needs limited usage of chemical fertilizer and increased usage of natural fertilizer as an alternative. In this study, dry soil-borne Bacillus sp. SHL-3, which was isolated from arid and barren soil, with plant growth promoting activity was isolated for identification and to determine optimal culture condition. A bacterial strain SHL-3 had the IAA productivity ($5.16{\pm}0.10mg\;L^{-1}$), ACC deaminase activity ($0.36{\pm}0.09$ at 51 hours) and siderophore synthesis. It was identified as genus Bacillus sp.. Also, optimal culture condition of SHL-3 were $20^{\circ}C$ and pH 7 in LB medium. Bacillus sp. SHL-3 had up to 4% salt tolerance in the medium. We evaluated the plant growth promotion ability of SHL-3 using yam (Dioscorea japonica Thunb.). As a result, Bacillus sp. SHL-3 was effective on the increase of the shoot length (202.4% increase for 91 days). These results indicate that Bacillus sp. SHL-3 can serve as a promising microbial resource for the biofertilizers of soil.

Isolation and Identification of Phosphate Solubilizing Bacteria from Chinese Cabbage and Their Effect on Growth and Phosphorus Utilization of Plants

  • Poonguzhali, Selvaraj;Madhaiyan, Munusamy;Sa, Tong-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.773-777
    • /
    • 2008
  • Phosphate solubilizing bacteria (PSB) were isolated from the rhizosphere of Chinese cabbage and screened on the basis of their solubilization of inorganic tricalcium phosphate in liquid cultures. Ten strains that had higher solubilization potential were selected, and they also produced indole-3-acetic acid, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and siderophores. The strains were identified to be members of Pseudomonas, by 16S rDNA sequence analysis. Seed bacterization with PSB strains increased the root elongation and biomass of Chinese cabbage in seedling culture, although they had no effect on phosphorus uptake of plants. The plant growth promotion by PSB in this study could be due to the production of phytohormones or mechanisms other than phosphate solubilization, since they had no effect on P nutrition.

Selection of Bacteria for Enhancement of Tolerance to Salinity and Temperature Stresses in Tomato Plants (토마토 염류와 온도 스트레스에 대한 내성을 유도하는 미생물 선발)

  • Yoo, Sung-Je;Shin, Da Jeong;Weon, Hang-Yeon;Song, Jaekyeong;Sang, Mee Kyung
    • Korean Journal of Organic Agriculture
    • /
    • v.26 no.3
    • /
    • pp.463-475
    • /
    • 2018
  • Salinity and extreme temperature stresses affect growth and productivity of crops negatively. Beneficial bacteria, including plant growth-promoting rhizobacteria (PGPR) induce growth promotion and tolerance of plants under abiotic stress conditions. In the present study, 20 strains were selected from 1944 isolated bacteria based on three plant growth-promoting (PGP) traits-aminocyclopropane-1-carboxylate deaminase activity, phosphate solubilization, indole-3-acetic acid production, and growth ability under salinity and extreme temperature stress conditions. Seven among the 20 strains were selected based on growth-promoting effects on plants under saline or temperature stresses in tomato plants. It was expected that the seven strains could induce tolerance of tomato plants under salinity or extreme temperature stresses, which implies that these seven strains can act as potential inducers of multiple stresses tolerance in tomato plants.