DOI QR코드

DOI QR Code

Effects of treatment of Enterobacter ludwigii SJR3 on growth of tomato plant and its expression of stress-related genes under abiotic stresses

비생물적 스트레스 환경에서 Enterobacter ludwigii SJR3 처리 시 토마토의 생장과 스트레스-관련 유전자의 발현

  • Kim, Na-Eun (Department of Biological Sciences, Kangwon National University) ;
  • Song, Hong-Gyu (Department of Biological Sciences, Kangwon National University)
  • Received : 2016.02.03
  • Accepted : 2016.04.05
  • Published : 2016.06.30

Abstract

This study examined effects of Enterobacter ludwigii SJR3 showing a high 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, on growth of tomato plant and its expression of stress-related genes under drought and salt stress. SJR3 strain was inoculated at $10^6cell/g$ soil to 4-week grown tomato plants, and drought and salt stresses were treated. After additional incubation for 1 week, root length, stem length, fresh weight and dry weight of tomato plants treated with SJR3 increased by 37.8, 37.2, 96.8 and 146.6%, respectively compared to those of uninoculated plants in drought stress environment, and they increased by 19.2, 25.4, 19.5, and 105.8%, respectively in salt stress environment. Proline content in tomato leaves increased significantly under stress conditions as one of a protecting substance against stresses, but proline contents in tomato treated with SJR3 decreased by 62.1 and 54.1%, respectively. Relative expression of genes encoding ACC oxidase, ACO1 and ACO4, ethylene response factor genes ERF1 and ERF4, and some other stress-related genes were examined from tomato leaves. Compared to the non-stressed tomato, expressions of all stress-related genes increased significantly in the stressed tomato, but gene expressions in the inoculated tomato were similar to those of no-stressed control tomato. Therefore, E. ludwigii SJR3 may play an important role in mitigating drought and salt stress in plants, and can increase productivity of crops under various abiotic stresses.

ACC deaminase 활성이 높은 균주인 Enterobacter ludwigii SJR3를 이용하여 건조와 염분 스트레스 환경에서 토마토 식물의 생장촉진 효과와 스트레스-관련 유전자의 발현을 조사하였다. 4주 키운 토마토 식물에 SJR3 균주 접종 후 건조 스트레스와 염분 스트레스를 처리하면서 1주일 후 식물의 생장을 비교하였다. 건조 스트레스 환경에서는 균주 접종군이 비접종군에 비해 뿌리와 줄기 길이 및 습윤과 건조중량이 각각 37.8, 37.2, 96.8과 146.6% 증가하였고 염분 스트레스 환경에서는 각각 19.2, 25.4, 19.5와 105.8% 증가하였다. 또한 스트레스에 반응하여 토마토 잎에 축적되는 proline의 함량은 크게 늘어나지만 건조와 염분 스트레스 처리 시 비접종 대조군 보다 균주 접종군에서 62.1%와 54.1% 감소되었다. 스트레스 환경에서 자라난 토마토 식물에서 스트레스-관련 유전자들인 ACC oxidase의 유전자 ACO1과 ACO4, ethylene response factor의 유전자 ERF1과 ERF4 등의 상대적인 발현량을 조사하였다. 비 스트레스 대조군과 비교해서 건조와 염분 스트레스 환경의 토마토 식물에서 모든 스트레스-관련 유전자들의 발현이 크게 증가하였으나 SJR3 균주를 접종한 식물의 유전자들은 대부분이 비 스트레스-처리 대조군과 유사한 정도의 유전자 발현량을 나타내었다. 따라서 E. ludwigii SJR3는 식물에서 건조와 염분 스트레스의 완화에 중요한 역할을 하여 작물의 생장을 촉진하고 생산성을 높일 수 있을 것으로 여겨진다.

Keywords

References

  1. Abeles, A. and Abeles, F. 1972. Biochemical pathway of stress-induced ethylene. Plant Physiol. 50, 496-498. https://doi.org/10.1104/pp.50.4.496
  2. Abo-Elmagd, H. 2014. Evaluation and optimization of antioxidant potentiality of Chaetomium madrasense AUMC 9376. J. Gen. Engineer. Biotechnol. 12, 21-26. https://doi.org/10.1016/j.jgeb.2014.03.002
  3. Ashraf, M. and Foolad, M. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 59, 206-216. https://doi.org/10.1016/j.envexpbot.2005.12.006
  4. Barnawal, D., Bharti, N., Maji, D., Chanotiya, C., and Kalra, A. 2014. ACC deaminase-containing Arthrobacter protophormiae induces NaCl stress tolerance through reduced ACC oxidase activity and ethylene production resulting in improved nodulation and mycorrhization in Pisum sativum. J. Plant Physiol. 171, 884-894. https://doi.org/10.1016/j.jplph.2014.03.007
  5. Bashan, Y. 1998. Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol. Adv. 16, 729-770. https://doi.org/10.1016/S0734-9750(98)00003-2
  6. Chinnusamy, V., Jagendorf, A., and Zhu, J. 2005. Understanding and improving salt tolerance in plants. Crop Sci. 45, 437-448. https://doi.org/10.2135/cropsci2005.0437
  7. Dawood, M., Taie, H., Nassar, R., Abdelhamid, M., and Schmidhalter, U. 2014. The changes induced in the physiological, biochemical and anatomical characteristics of Vicia faba by the exogenous application of proline under seawater stress. S. Afr. J. Bot. 93, 54-63. https://doi.org/10.1016/j.sajb.2014.03.002
  8. Efeoglu, B., Ekmekci, Y., and Cicek, N. 2009. Physiological responses of three maize cultivars to drought stress and recovery. S. Afr. J. Bot. 75, 34-42. https://doi.org/10.1016/j.sajb.2008.06.005
  9. Galvez, F., Baghour, M., Hao, G., Cagnac, O., Rodriguez-Rosales, M., and Venema, K. 2012. Expression of LeNHX isoforms in response to salt stress in salt sensitive and salt tolerant tomato species. Plant Physiol. Biochem. 51, 109-115. https://doi.org/10.1016/j.plaphy.2011.10.012
  10. Gill, S. and Tuteja, N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016
  11. Gomes, F., Oliva, M., Mielke, M., Almeida, A., and Aquino, L. 2010. Osmotic adjustment, proline accumulation and cell membrane stability in leaves of Cocos nucifera submitted to drought stress. Sci. Hortic. 126, 379-384. https://doi.org/10.1016/j.scienta.2010.07.036
  12. Gutterson, N. and Reuber, T. 2004. Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr. Opin. Plant Biol. 7, 465-471. https://doi.org/10.1016/j.pbi.2004.04.007
  13. Imai, R., Chang, L., Ohta, A., Bray, E., and Takagi, M. 1996. A lea-class gene of tomato confers salt and freezing tolerance when expressed in Saccharomyces cerevisiae. Gene 170, 243-248. https://doi.org/10.1016/0378-1119(95)00868-3
  14. Jo, Y.H. 2014. Growth promotion of tomato by some ACC deaminase-producing rhizobacteria under drought stress. M. S. thesis. pp. 12-37, Kangwon National University, Chuncheon, Republic of Korea.
  15. Kishor, P., Hong, Z., Miao, G., Hu, C., and Verma, D. 1995. Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 108, 1387-1394. https://doi.org/10.1104/pp.108.4.1387
  16. Mahajan, S. and Tuteja, N. 2005. Cold, salinity and drought stresses: an overview. Arch. Biochem. Biophy. 444, 139-158. https://doi.org/10.1016/j.abb.2005.10.018
  17. Nakatsuka, A., Shiomi, S., Kubo, Y., and Inaba, A. 1997. Expression and internal feedback regulation of ACC synthase and ACC oxidase genes in ripening tomato fruit. Plant Cell Physiol. 38, 1103-1110. https://doi.org/10.1093/oxfordjournals.pcp.a029094
  18. Park, J., Park, C., Lee, S., Ham, B., Shin, R., and Paek, K. 2001. Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13, 1035-1046. https://doi.org/10.1105/tpc.13.5.1035
  19. Rodriguez-Rosales, M., Jiang, X., Galvez, F., Aranda, M., Cubero, B., and Venema, K. 2008. Overexpression of the tomato $K^+/H^+$ antiporter LeNHX2 confers salt tolerance by improving potassium compartmentalization. New Phytol. 179, 366-377. https://doi.org/10.1111/j.1469-8137.2008.02461.x
  20. Sacchi, N. and Chomczynski, P. 2006. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat. Protoc. 1, 581-585. https://doi.org/10.1038/nprot.2006.83
  21. Shoebitz, M., Ribaudo, C., Pardo, M., Cantore, M., Ciampi, L., and Cura, J. 2009. Plant growth promoting properties of a strain of Enterobacter ludwigii isolated from Lorium perenne rhizosphere. Soil Biol. Biochem. 41, 1768-1774. https://doi.org/10.1016/j.soilbio.2007.12.031
  22. Slabbert, M. and Kruger, G. 2014. Antioxidant enzyme activity, proline accumulation, leaf area and cell membrane stability in water stressed Amaranthus leaves. S. Afr. J. Bot. 95, 123-128. https://doi.org/10.1016/j.sajb.2014.08.008
  23. Tiwari, S., Lata, C., Chauhan, P., and Nautiyal, C. 2016. Pseudomonas putida attunes morphological, biochemical and molecular responses in Cicer arietinum L. during drought stress abd recovery. Plant Physiol. Biochem. 99, 108-117. https://doi.org/10.1016/j.plaphy.2015.11.001
  24. Tournier, B., Sanchez-Ballesta, M., Jones, B., Pesquet, E., Regad, F., Latche, A., and Bouzayen, M. 2003. New members of the tomato ERF family show specific expression pattern and diverse DNA-binding capacity to the GCC box element. FEBS Lett. 550, 149-154. https://doi.org/10.1016/S0014-5793(03)00757-9
  25. Yang, J., Kloepper, J., and Ryu, C. 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 14, 1-4. https://doi.org/10.1016/j.tplants.2008.10.004
  26. Yim, W., Seshadri, S., Kim, K., Lee, G., and Sa, T. 2013. Ethylene emission and PR protein synthesis in ACC deaminase producing Methylobacterium spp. inoculated tomato plants (Lycopersicon esculentum Mill.) challenged with Ralstonia solanacearum under greenhouse conditions. Plant Physiol. Biochem. 67, 95-104. https://doi.org/10.1016/j.plaphy.2013.03.002
  27. Yim, W., Kim, K., Lee, Y., Sundaram, S., Lee, Y., and Sa, T. 2014. Real time expression of ACC oxidase and PR-protein genes mediated by Methylobacterium spp. in tomato plants challenged with Xanthomonas campestris pv. vesicatoria. J. Plant Physiol. 171, 1064-1075. https://doi.org/10.1016/j.jplph.2014.03.009
  28. Zhai, Q., Yin, R., Yu, L., Wang, G., Tian, F., Yu, R., and Chen, W. 2015. Screening of lactic acid bacteria with potential protective effects against cadmium toxicity. Food Control 54, 23-30. https://doi.org/10.1016/j.foodcont.2015.01.037