• Title/Summary/Keyword: AC-Electrochemical Deposition

검색결과 11건 처리시간 0.034초

Characterization of Anodized Al 1050 with Electrochemically Deposited Cu, Ni and Cu/Ni and Their Behavior in a Model Corrosive Medium

  • Girginov, Christian;Kozhukharov, Stephan;Tsanev, Alexander;Dishliev, Angel
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권2호
    • /
    • pp.188-203
    • /
    • 2021
  • The specific benefits of the modified films formed on preliminary anodized aluminum, including the versatility of their potential applications impose the need for evaluation of the exploitation reliability of these films. In this aspect, the durability of Cu and Ni modified anodized aluminum oxide (AAO) films on the low-doped AA1050 alloy was assessed through extended exposure to a 3.5% NaCl model corrosive medium. The electrochemical measurements by means of electrochemical impedance spectroscopy (EIS) and potentiodynamic scanning (PDS) after 24 and 720 hours of exposure have revealed that the obtained films do not change their obvious barrier properties. In addition, supplemental analyses of the coatings were performed, in order to elucidate the impact of the AC-deposition of Cu and Ni inside the pores. The scanning electron microscopy (SEM) images have shown that the surface topology is not affected and resembles the typical surface of an etched metal. The subsequent energy dispersive X-ray spectroscopy (EDX) tests have revealed a predominance of Cu in the combined AAO-Cu/Ni layers, whereas additional X-ray photoelectron (XPS) analyses showed that both metals form oxides with different oxidation states due to alterations in the deposition conditions, promoted by the application of AC-polarization of the samples.

CBD(Chemical Bath Deposition) 법으로 제조된 전기화학식 캐패시터용 NiO 나노박편 필름 (Nickel Oxide Nano-Flake Films Synthesized by Chemical Bath Deposition for Electrochemical Capacitors)

  • 김영하;박수진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.163.2-163.2
    • /
    • 2010
  • In this work, nano-flake shaped nickel oxide (NiO) films were synthesized by chemical bath deposition technique for electrochemical capacitors. The deposition was carried out for 1 and 2 h at room temperature using nickel foam as the substrate and the current collector. The structure and morphology of prepared NiO film were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). And, electrochemical properties were characterized by cyclic voltammetry, galvanostatic charge-discharge, and AC impedence measurement. It was found that the NiO film was constructed by many interconnected NiO nano-flakes which arranged vertically to the substrate, forming a net-like structure with large pores. The open macropores may facilitate the electrolyte penetration and ion migration, resulted in the utilization of nickel oxide due to the increased surface area for electrochemical reactions. Furthermore, it was found that the deposition onto nickel foam as substrate and curent collector led to decrease of the ion transfer resistance so that its specific capacitance of a NiO film had high value than NiO nano flake powder.

  • PDF

Electrochemical Fabrication of CdS/CO Nanowrite Arrays in Porous Aluminum Oxide Templates

  • Yoon, Cheon-Ho;Suh, Jung-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권11호
    • /
    • pp.1519-1523
    • /
    • 2002
  • A procedure for preparing semiconductor/metal nanowire arrays is described, based on a template method which entails electrochemical deposition into nanometer-wide parallel pores of anodic aluminum oxide films on aluminum. Aligned CdS/Co heterostructured nanowires have been prepared by ac electrodeposition in the anodic aluminum oxide templates. By varying the preparation conditions, a variety of CdS/Co nanowire arrays were fabricated, whose dimensional properties could be adjusted.

Lithium intercalation into a plasma-enhanced-chemical-vapour-deposited carbon film electrode

  • Pyun Su-II
    • 전기화학회지
    • /
    • 제2권1호
    • /
    • pp.38-45
    • /
    • 1999
  • Electrochemical lithium intercalation into a PECVD (plasma enhanced chemical vapour deposited) carbon film electrode was investigated in 1 M $LiPF_6-EC$ (ethylene carbonate) and DEC (diethyl carbonate) solution during lithium intercalation and deintercalation, by using cyclic voltammetry supplemented with ac-impedance spectroscopy. The size of the graphitic crystallite in the a- and c-axis directions obtained from the carbon film electrode was much smaller than those of the graphite one, indicating less-developed crystalline structure with hydrogen bonded to carbon, from the results of AES (Auger electron spectroscopy), powder XRD (X-ray diffraction) method, and FTIR(Fourier transform infra-red) spectroscopy. It was shown from the cyclic voltammograms and ac-impedance spectra of carbon film electrode that a threshold overpotential was needed to overcome an activation barrier to entrance of lithium into the carbon film electrode, such as the poor crystalline structure of the carbon film electrode showing disordered carbon and the presence of residual hydrogen in its structure. The experimental results were discussed in terms of the effect of host carbon structure on the lithium intercalation capability.

탄소 전극 형상 변화에 따른 전기화학 커패시터 특성 향상 (Improvement of Electrochemical Characteristics by Changing Morphologies of Carbon Electrode)

  • 민형섭;김상식;정덕수;최원국;오영제;이전국
    • 한국재료학회지
    • /
    • 제19권10호
    • /
    • pp.544-549
    • /
    • 2009
  • Activated carbon (AC) with very large surface area has high capacitance per weight. However, such activation methods tend to suffer from low yields, below 50%, and are low in electrode density and capacitance per volume. Carbon NanoFibers (CNFs) had high surface area polarizability, high electrical conductivity and chemical stability, as well as extremely high mechanical strength and modulus, which make them an important material for electrochemical capacitors. The electrochemical properties of immobilized CNF electrodes were studied for use as in electrical double layer capacitor (EDLC) applications. Immobilized CNFs on Ni foam grown by thermal chemical vapor deposition (CVD) were successfully fabricated. CNFs had a uniform diameter range from 50 to 60 nm. Surface area was 56 m$^2$/g. CNF electrodes were compared with AC and multi wall carbon nanotube (MWNT) electrodes. The electrochemical performance of the various electrodes was examined with aqueous electrolyte of 2M KOH. Equivalent series resistance (ESR) of the CNF electrodes was lower than that of AC and MWNT electrodes. The specific capacitance of 47.5 F/g of the CNF electrodes was achieved with discharge current density of 1 mA/cm$^2$.

Electrochemical Characteristics of Zn and Si Ion-doped HA Films on Ti-6Al-4V by PEO Treatment

  • Lim, Sang-Gyu;Hwang, In-Jo;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.199-199
    • /
    • 2016
  • Commercially pure titanium (cp-Ti) and Ti alloys (typically Ti-6Al-4V) display excellent corrosion resistance and biocompatibility. Although the chemical composition and topography are considered important, the mechanical properties of the material and the loading conditions in the host have, conventionally. Ti and its alloys are not bioactive. Therefore, they do not chemically bond to the bone, whereas they physically bond with bone tissue. The electrochemical deposition process provides an effective surface for biocompatibility because large surface area can be served to cell proliferation. Electrochemical deposition method is an attractive technique for the deposition of hydroxyapatite (HAp). However, the adhesions of these coatings to the Ti surface needs to be improved for clinical used. Plasma electrolyte oxidation (PEO) enables control in the chemical com position, porous structure, and thickness of the $TiO_2$ layer on Ti surface. In addition, previous studies h ave concluded that the presence of $Ca^{+2}$ and ${PO_4}^{3-}$ ion coating on porous $TiO_2$ surface induced adhesion strength between HAp and Ti surface during electrochemical deposition. Silicon (Si) in particular has been found to be essential for normal bone and cartilage growth and development. Zinc (Zn) plays very important roles in bone formation and immune system regulation, and is also the most abundant trace element in bone. The objective of this work was to study electrochemical characteristcs of Zn and Si coating on Ti-6Al-4V by PEO treatment. The coating process involves two steps: 1) formation of porous $TiO_2$ on Ti-6Al-4V at high potential. A pulsed DC power supply was employed. 2) Electrochemical tests were carried out using potentiodynamic and AC impedance methoeds. The morphology, the chemical composition, and the micro-structure an alysis of the sample were examined using FE-SEM, EDS, and XRD. The enhancements of the HAp forming ability arise from $Si/Zn-TiO_2$ surface, which has formed the reduction of the Si/Zn ions. The promising results successfully demonstrate the immense potential of $Si/Zn-TiO_2$ coatings in dental and biomaterials applications.

  • PDF

전자빔 물리증착을 이용한 고체 산화물 연료전지의 제조: II. 단전지 성능 (Fabrication of Solid Oxide Fuel Cells via Physical Vapor Deposition with Electron Beam: II. Unit Cell Performance)

  • 김형철;박종구;정화영;손지원;김주선;이해원;이종호
    • 한국세라믹학회지
    • /
    • 제43권5호
    • /
    • pp.299-303
    • /
    • 2006
  • In this paper, anode supported SOFC with columnar structured YSZ electrolyte was fabricated via Electron Beam Physical Vapor Deposition (EBPVD) method. Liquid condensation process was employed for the preparation of NiO-YSZ substrate and the high power electron beam deposition method was used for the deposition of YSZ electrolyte film. Double layered cathode with LSM-YSZ and LSM was printed on electrolyte via screen-printing method and fired at $1150^{\circ}C$ in air atmosphere for 3 h. The electrochemical performance and the long-term stability of $5{\times}5cm^2$ single cell were investigated with DC current-voltage characteristics and AC-impedance spectroscopy. According to the investigation, $5{\times}5cm^2$ sized unit cell showed the maximum power density of around $0.76W/cm^2$ at $800^{\circ}C$ and maintained the stable performance over 400 h.

Synthesis of Ordered Mesoporous Manganese Oxides by Double Replication for Use as an Electrode Material

  • Guo, Xiao-Feng;Kim, Geon-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권1호
    • /
    • pp.186-190
    • /
    • 2011
  • Periodically ordered mesoporous manganese oxides were synthesized in a single and double replication procedure. Mesoporous SBA-15 and -16 silica and their reverse replica carbons were successively used as hard templates. The silica and carbon pore systems were infiltrated with $Mn(NO_3)_2{\cdot}xH_2O$ or $Mn(AcAc)_2$, which was then converted to $Mn_2O_3$ at 873 K; the silica and carbon matrix were finally removed by NaOH solution or calcinations in air. The structure of the mesoporous $Mn_2O_3$, using a carbon template, corresponds to that of the original SBA-15 and SBA-16 silica. The products consist of hexagonally arranged cylindrical mesopores with crystalline pore walls or cubic mesoporous pores. The structure of replica has been confirmed by XRD, TEM analysis, and its electrochemical properties were tested with cyclic voltammetry. Formation of $Mn_2O_3$ inside the mesoporous carbon pore system showed much improved electrical properties.

Electrochemical Behaviors of PEO-treated Ti-6Al-4V Alloy in Solution Containing Zn and Si Ions

  • Hwang, In-Jo;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.160-160
    • /
    • 2017
  • Commercially pure titanium (Cp-Ti) and Ti alloys (typically Ti-6Al-4V) display excellent corrosion resistance and biocompatibility. Although the chemical composition and topography are considered important, the mechanical properties of the material and the loading conditions in the host have, conventionally. Ti and its alloys are not bioactive. Therefore, they do not chemically bond to the bone, whereas they physically bond with bone tissue. The electrochemical deposition process provides an effective surface for biocompatibility because large surface area can be served to cell proliferation. Plasma electrolyte oxidation (PEO) enables control in the chemical composition, porous structure, and thickness of the TiO2 layer on Ti surface. Silicon (Si) in particular has been found to be essential for normal bone and cartilage growth and development. Zinc (Zn) plays very important roles in bone formation and immune system regulation, and is also the most abundant trace element in bone. The objective of this work was to study on electrochemical behaviors of PEO-treated Ti-6Al-4V Alloy in solution containing Zn and Si ions. The morphology, the chemical composition, and the microstructure analysis of the sample were examined using FE-SEM, EDS, and XRD. The potentiodynamic polarization and AC impedance tests for corrosion behaviors were carried out in 0.9% NaCl solution at similar body temperature using a potentiostat. The promising results successfully demonstrated the immense potential of Si/Zn-TiO2 coatings in dental and biomaterials applications.

  • PDF

Conditioning Effects on LSM-YSZ Cathodes for Thin-film SOFCs

  • Lee You-Kee;Visco Steven J.
    • 전기화학회지
    • /
    • 제2권4호
    • /
    • pp.202-208
    • /
    • 1999
  • [ $50/50 vol\%$ ] LSM-YSZ의 양극은 콜로이드 증착법에 의해 YSZ 전해질상에 증착하였다. 양극 특성은 주사전자현미경과 임피던스 분석기에 의해 고찰하였다. LSM-YSZ양극의 제조 조건에 따른 영향을 관찰하였으며, 그 영향에 대한 개선책이 고체산화물 연료전지의 성능향상을 위해 제시되었다. 임피던스에 대한 온도, YSZ전해질로의 양극 접착에 대한 표면 오염, 사용하는 Pt 페이스트, 미세구조에 대한 곡표면에 가해진 연무질 분사기술과 셀과 셀의 변동성에 대한 영향들은 각각 $900^{\circ}C$ 측정, YSZ표면 연마, 일단의 Pt페이스트 사용, 평편한 YSZ판의 사용과 일관된 절차와 기술의 사용에 의해 해결되었다. 이때 재현성 있는 임피던스 스펙트럼들이 향상된 셀을 사용함으로써 얻어졌고, $900^{\circ}C$에서 (공기)LSM-YSZ/YSZ/LSM-YSZ(공기) 셀에 대해 측정된 전형적인 임피던스 스펙트럼들은 2개의 불완전한 호로 구성되었다. 또한 LSM-YSZ 양극의 임피던스 특성은 촉매층, 양극 조성, 인가 전류 등과 같은 실험 조건들에 의해서도 영향을 받았다.