• Title/Summary/Keyword: AC energy

Search Result 1,019, Processing Time 0.033 seconds

New Strategy for Eliminating Zero-sequence Circulating Current between Parallel Operating Three-level NPC Voltage Source Inverters

  • Li, Kai;Dong, Zhenhua;Wang, Xiaodong;Peng, Chao;Deng, Fujin;Guerrero, Josep;Vasquez, Juan
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.70-80
    • /
    • 2018
  • A novel strategy based on a zero common mode voltage pulse-width modulation (ZCMV-PWM) technique and zero-sequence circulating current (ZSCC) feedback control is proposed in this study to eliminate ZSCCs between three-level neutral point clamped (NPC) voltage source inverters, with common AC and DC buses, that are operating in parallel. First, an equivalent model of ZSCC in a three-phase three-level NPC inverter paralleled system is developed. Second, on the basis of the analysis of the excitation source of ZSCCs, i.e., the difference in common mode voltages (CMVs) between paralleled inverters, the ZCMV-PWM method is presented to reduce CMVs, and a simple electric circuit is adopted to control ZSCCs and neutral point potential. Finally, simulation and experiment are conducted to illustrate effectiveness of the proposed strategy. Results show that ZSCCs between paralleled inverters can be eliminated effectively under steady and dynamic states. Moreover, the proposed strategy exhibits the advantage of not requiring carrier synchronization. It can be utilized in inverters with different types of filter.

Effect of an Increased Wall Thickness on Delayed Hydride Cracking in Zr-2.5Nb Pressure Tube (Zr-2.5Nb 중수로 압력관의 수소지연파괴에 미치는 압력관 두께의 영향)

  • Jeong, Yong-Hwan;Kim, Young-Suk
    • Nuclear Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.226-233
    • /
    • 1995
  • The wall thickness of a pressure tube is increased in order to reduce the probability of failure in a pressure tube of CANDU type reactor. It is presented here that the variation of wall thickness changes stress, hydrogen concentration and delayed hydride cracking in Zr-2.5Nb pressure tube. When the wall thickness is increased from 4.2 mm to 5.2 mm, the stress exerted on the tube and the deuterium taken up during operation are reduced by 19%. Further, the calculated allowable depth of the surface flaw over which delayed hydride cracking(DHC) is susceptible increases by 50%. DHC initiation is controlled by the stress and by the hydrogen concentration in the pressure tube. The results are therefore very significant in such a respect that increased wall thickness may reduce DHC initiation. Ac the wall thickness increases the hydrostatic tension will increase. Its impact on the acceleration of the crack growth rate of DHC deserves further studies.

  • PDF

Fuzzy LP Based Power Network Peak Shaving Algorithm (퍼지 LP 기반 전력망 Peak Shaving 알고리즘)

  • Ohn, Sungmin;Kim, Jung-Su;Song, Hwachang;Chang, Byunghoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.754-760
    • /
    • 2012
  • This paper describes peak shaving algorithms as long-term cycle scheduling in the power management system (PMS) for MW-scale battery energy storage systems (BESS). The purpose of PMS is basically to manage the input and output power from battery modules placed in the systems. Assuming that an one-day ahead load curve is provided, off-line peak shaving algorithms can be employed, but applying the results of the off-line algorithm may result in the difference in the real-time performance because there is uncertainty in the provided load curve. This paper adopts fuzzy based LP (linear programming) algorithms for describing the peak shaving algorithm in PMS and discusses a solution technique and real-time operation strategies using the solution.

Establishment of a National Primary Inductance Standard Unit

  • Kim Han Jun;Lee Rae Duk;Semenov Yu. P.;Han Sang Ok
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.283-288
    • /
    • 2005
  • A portable primary inductance standard set that includes a Maxwell-Wien bridge and a 10 mH standard inductor installed in a thermostat has been developed at KRISS. Two auxiliary resistance capacitance networks (analogous to a 'Wagner ground') provide excellent stability of the bridge balance and impose less strict requirements on the components of these networks. Removable capacitance and ac-dc resistance standards used in the bridge arms made it possible to reproduce 10 mH and 100 mH inductance values in the frequency range of 500 Hz to 3 kHz. From investigations of this standard and preliminary comparison with VNIIM (D. I. Mendeleyev Institute for Metrology), the results have demonstrated that the bridge can be used as a part of the transportable inductance standard with a measurement uncertainty within (1-3) $\mu$H/H at frequencies of 1 kHz and 1.6 kHz. The application of the bridge as a constituent part of the transportable standard gives us an opportunity to eliminate the influence of the standard inductors.

Surface Modification of Multi-walled Carbon Nanotubes for Enhancement of Dispersion and Electrochemical Properties

  • Kim, Young-Ja;Zhang, Wentao;Lee, Hong-Ro;Kim, Jong-Hyee
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.5
    • /
    • pp.194-198
    • /
    • 2008
  • Several methods for improving dispersion of carbon nanotubes (CNTs) have been investigated. CNTs modified by acids and hydrogen peroxide ($H_2O_2$) showed improved dispersion. From SEM micrographs and photos of dispersion, CNTs modified with nitric acid and $H_2O_2$, showed no agglomeration in solution even standing for 4 months, which means successfully improved dispersion property. TEM micrographs of surface modified single CNT treated with 69% $HNO_3$ in boiling acid solution as the optimum method were obtained. For confirmation of CNTs' application to EDLC electrode materials, characteristics of EDLC have been analyzed by cyclic voltammetry curve, specific capacitance of unit cell, electrode discharge curves and AC impedance curve. From the results, it could be confirmed that electrochemical properties of CNTs were enhanced after surface modification with 69% $HNO_3$ acid treatment.

Effects of Boron Doping on Properties of CdS Films and Characteristics of CdS/CdTe Solar Cells (보론 도핑에 따른 CdS 박막 및 CdS/CdTe 태양전지 특성)

  • Lee, Jae-Hyeong;Lee, Ho-Yeol;Park, Yong-Gwan
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.8
    • /
    • pp.563-569
    • /
    • 1999
  • Boron doped CdS films were prepared by chemical bath deposition using boric acid$(H_3BO_3)$ as donor dopant source, and their electrical, optical properties were investigated as a function of doping concentration. In addition, effects of boron doping of CdS films on characteristics of CdS/CdTe solar cells were investigated. Boron doping highly decreased the resistivity and slightly increased optical band gap of CdS films. The lowest value of resistivity was $2 \Omega-cm \;at\; H_3BO_3/Cd(Ac)_2$ molar ratio of 0.1. For the molar ratio more than 0.1, however, the resistivity increased because of decreasing carrier concentration and mobility and showed similar value for undoped films. The photovoltaic characteristics of CdS/CdTe solar cells with boron doped CdS film improved due to the decrease of the conduction band-Fermi level energy gap of CdS films and the series resistance of solar cell.

  • PDF

Development of ECO Driving Meter System for Diesel Locomotives (디젤기관차 연료사용량 측정장치 개발)

  • Park, Tae-Gi;Lee, Eul-Jae
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2357-2364
    • /
    • 2011
  • Diesel locomotive operates the generator with the power from the diesel engine, and it consists of the typical serial-hybrid system which operates the train wheels by converting its generated electric energy into the torque of DC (or AC) motor. However, the technology of locomotives is only focused on trains' controlling power generation mechanism. Hence, it is a current issue that the efficiency of its engine and its generator is relatively lower than that of auto vehicles'. Particularly, since there are no proper equipment to measure the amount of fuel which is essentially necessary for the efficient use of fuel, it is not easy to confirm the instant amount of fuel use as well as the exact average fuel consumption per an hour. Due to those difficulties, it is urgent to develop the device that measures the fuel consumption. Plus, this use of the developed measuring device allows the various and useful analysis relating to the fuel consumption, and this could lead to establishing the efficient driving pattern regarding to fuel saving. This device consists of two flux (fuel level) measuring censors, MCU for calculating the measured values, the information recorder for saving measured values, and the display device for indicating the fuel amount consumed during driving.

  • PDF

Structural and electrical properties of perovskite Ba(Sm1/2Nb1/2)O3-BaTiO3 ceramic

  • Nath, K. Amar;Prasad, K.
    • Advances in materials Research
    • /
    • v.1 no.2
    • /
    • pp.115-128
    • /
    • 2012
  • The structural and electrical properties of $(1-x)Ba(Sm_{1/2}Nb_{1/2})O_3-xBaTiO_3$; ($0{\leq}x{\leq}1$) ceramics were prepared by conventional ceramic technique at $1375^{\circ}C$/7 h in air atmosphere. The crystal symmetry, space group and unit cell dimensions were derived from the X-ray diffraction (XRD) data using FullProf software whereas crystallite size and lattice strain were estimated from Williamson-Hall approach. XRD analysis of the compound indicated the formation of a single-phase cubic structure with the space group Pm m. Dielectric study revealed that the compound $0.75Ba(Sm_{1/2}Nb_{1/2})O_3-0.25BaTiO_3$ is having low and ${\varepsilon}^{\prime}$ and ${\varepsilon}^{{\prime}{\prime}}$ a low $T_{CC}$ (< 5%) in the working temperature range (up to+$100^{\circ}C$) which makes this composition suitable for capacitor application and may be designated as 'Stable Low-K' Class I material as per the specifications of the Electronic Industries Association. The correlated barrier hopping model was employed to successfully explain the mechanism of charge transport in the system. The ac conductivity data were used to evaluate the density of states at Fermi level, minimum hopping length and apparent activation energy of the compounds.

LLC Resonant Converter design for Uninterruptible Power Supply Battery Discharger (LLC 공진형 컨버터를 이용한 무정전전원장치 Battery Discharger 설계)

  • Yoo, Kwang-Min;Kim, Seung-Joo;Kim, Kyoung-Dong;Park, Seung-Hee;Byeon, Yong-Seop;Lim, Seung-Beom;Lee, Jun-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.240-246
    • /
    • 2013
  • An Uninterruptible Power Supply(UPS) is a system designed to deliver energy during accidents that the AC mains is out of its acceptable limits, without interruption of power flow through the load. Battery Discharger is the device to supply high quality power to the Inverter, when accidents occur, such as Power Failure. The Battery Discharger should have a fast response characteristics. The LLC resonant converter for UPS battery discharger is proposed. The proposed Battery Discharger offers substantial improvements in efficiency, size and cost. The proposed Battery Discharger of UPS approach is a good solution for high power applications above KW. To verify the validity of proposed Battery Discharger, simulations and experiments are carried out.

Nickel Oxide Nano-Flake Films Synthesized by Chemical Bath Deposition for Electrochemical Capacitors (CBD(Chemical Bath Deposition) 법으로 제조된 전기화학식 캐패시터용 NiO 나노박편 필름)

  • Kim, Young-Ha;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.163.2-163.2
    • /
    • 2010
  • In this work, nano-flake shaped nickel oxide (NiO) films were synthesized by chemical bath deposition technique for electrochemical capacitors. The deposition was carried out for 1 and 2 h at room temperature using nickel foam as the substrate and the current collector. The structure and morphology of prepared NiO film were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). And, electrochemical properties were characterized by cyclic voltammetry, galvanostatic charge-discharge, and AC impedence measurement. It was found that the NiO film was constructed by many interconnected NiO nano-flakes which arranged vertically to the substrate, forming a net-like structure with large pores. The open macropores may facilitate the electrolyte penetration and ion migration, resulted in the utilization of nickel oxide due to the increased surface area for electrochemical reactions. Furthermore, it was found that the deposition onto nickel foam as substrate and curent collector led to decrease of the ion transfer resistance so that its specific capacitance of a NiO film had high value than NiO nano flake powder.

  • PDF