DOI QR코드

DOI QR Code

Structural and electrical properties of perovskite Ba(Sm1/2Nb1/2)O3-BaTiO3 ceramic

  • Nath, K. Amar (University Department of Physics, T. M. Bhagalpur University) ;
  • Prasad, K. (Centre for Applied Physics, Central University of Jharkhand)
  • Received : 2012.04.21
  • Accepted : 2012.06.03
  • Published : 2012.06.25

Abstract

The structural and electrical properties of $(1-x)Ba(Sm_{1/2}Nb_{1/2})O_3-xBaTiO_3$; ($0{\leq}x{\leq}1$) ceramics were prepared by conventional ceramic technique at $1375^{\circ}C$/7 h in air atmosphere. The crystal symmetry, space group and unit cell dimensions were derived from the X-ray diffraction (XRD) data using FullProf software whereas crystallite size and lattice strain were estimated from Williamson-Hall approach. XRD analysis of the compound indicated the formation of a single-phase cubic structure with the space group Pm m. Dielectric study revealed that the compound $0.75Ba(Sm_{1/2}Nb_{1/2})O_3-0.25BaTiO_3$ is having low and ${\varepsilon}^{\prime}$ and ${\varepsilon}^{{\prime}{\prime}}$ a low $T_{CC}$ (< 5%) in the working temperature range (up to+$100^{\circ}C$) which makes this composition suitable for capacitor application and may be designated as 'Stable Low-K' Class I material as per the specifications of the Electronic Industries Association. The correlated barrier hopping model was employed to successfully explain the mechanism of charge transport in the system. The ac conductivity data were used to evaluate the density of states at Fermi level, minimum hopping length and apparent activation energy of the compounds.

Keywords

References

  1. Ang, C., Jurado, J.R., Yu, Z., Colomer, M.T., Frade, J.R. and Baptista, J.L. (1998), "Variable-range-hopping conduction and dielectric relaxation in disordered $Sr_{0.97}(Ti_{1-x}Fe_x)O_{3-{\delta}}$", Phys. Rev. B, 57(19), 11858-11861. https://doi.org/10.1103/PhysRevB.57.11858
  2. Bhagat, S. and Prasad, K. (2010), "Structural and impedance spectroscopy analysis of $Ba(Fe_{1/2}Nb_{1/2})O_3$ ceramic", Phys. Status Solidi A, 207(5), 1232-1239.
  3. Bhalla, A.S., Guo, R. and Roy, R. (2000), "The perovskite structure - a review of its role in ceramic science and technology", Mater. Res. Innov., 4(1), 3-26. https://doi.org/10.1007/s100190000062
  4. Chan, H.L.W., Choy, S.H., Chong, C.P., Li, H.L. and Liu, P.C.K. (2008), "Bismuth sodium titanate based leadfree ultrasonic transducer for microelectronics wirebonding applications", Ceram. Int., 34(4), 773-777. https://doi.org/10.1016/j.ceramint.2007.09.085
  5. Dias, A., Abdul Khalam, L., Sebastian, M.T., Paschoal, C.W.A. and Moreira, R.L. (2006), "Chemical substitution in $Ba(RE_{1/2}Nb_{1/2})O_3$ (RE = La, Nd, Sm, Gd, Tb, and Y) microwave ceramics and its influence on the crystal structure and phonon modes", Chem. Mater., 18(1), 214-220. https://doi.org/10.1021/cm051982f
  6. Elliott, S.R. (1978), "Temperature-dependence of ac conductivity of chalcogenide glasses", Philos. Mag. B, 37(5), 553-560. https://doi.org/10.1080/01418637808226448
  7. Elliott, S.R. (1987), "A.c. conduction in amorphous chalcogenide and pnictide semiconductors", Adv. Phys., 36(2), 135-217. https://doi.org/10.1080/00018738700101971
  8. Funke, K. (1993), "Jump relaxation in solid electrolytes", Prog. Solid State Ch., 22, 111-195. https://doi.org/10.1016/0079-6786(93)90002-9
  9. Hiruma, Y., Aoyaqi, R., Nagata, H. and Takenaka, T. (2004), "Piezoelectric properties of $BaTiO_3-(Bi_{1/2}K_{1/2})TiO_3$ ferroelectric ceramics", Jpn. J. Appl. Phys., 43(11), 7556-7559. https://doi.org/10.1143/JJAP.43.7556
  10. Iguchia, E. and Mochizuki, S. (2004), "Electric conduction and dielectric relaxation processes in solid oxide fuel cell electrolyte $La_{0.5}Sr_{0.5}Ga_{0.6}Ti_{0.4}O_{3{\ddot{a}}}$", J. Appl. Phys., 96(7), 3889-3896. https://doi.org/10.1063/1.1786675
  11. Jonscher, A.K. (1983), Dielectric relaxation in solids, Chelsea, New York.
  12. Kroger, F.A. and Vink, H.J. (1956), "Relations between the concentrations of imperfections in crystalline solids", Solid State Phys., 3(3), 307-435. https://doi.org/10.1016/S0081-1947(08)60135-6
  13. Li, G., Liu, S., Liao, F., Tian, S., Jing, X., Lin, J., Uesu, Y., Kohn, K., Saitoh, K., Terauchi, M., Di, N. and Cheng, Z. (2004), "The structural and electric properties of the perovskite system $BaTiO_3-Ba(Fe_{1/2}Ta_{1/2})O_3$", J. Solid State Chem., 177(4-5), 1695-1703. https://doi.org/10.1016/j.jssc.2003.12.025
  14. Li, W., Qi, J., Wang, Y., Li, L. and Gui, Z. (2002), "Doping behaviors of $Nb_2O_5$ and $Co_2O_3$ in temperature stable $BaTiO_3$-based ceramics", Mater. Lett., 57(1), 1-5. https://doi.org/10.1016/S0167-577X(02)00687-0
  15. Mahboob, S., Dutta, A.B., Prakash, C., Swaminathan, G., Suryanarayana, S.V., Prasad, G. and Kumar, G.S. (2006), "Dielectric behaviour of microwave sintered rare-earth doped $BaTiO_3$ ceramics", Mater. Sci. Eng. B, 134(1), 36-40. https://doi.org/10.1016/j.mseb.2006.06.050
  16. Maier, R., Chon, J.L., Neumeier, J.J. and Bendersky, L.A. (2001), "Ferroelectricity and ferrimagnetism in iron-doped $BaTiO_3$", Appl. Phys. Lett., 78(17), 2536-2539. https://doi.org/10.1063/1.1367311
  17. Mizaras, R., Takashige, M., Banys, J., Kojima, S., Grigas, J., Hamazaki S.I. and Brilingas, A. (1997), "Dielectric relaxation in $Ba_2NaNb_{5(1-x)}Ta_{5x}O_{15}$ single crystals", J. Phys. Soc. Jpn., 66(9), 2881-2885. https://doi.org/10.1143/JPSJ.66.2881
  18. Mollah, S., Som, K.K., Bose, K. and Chaudri, B.K. (1993), "ac conductivity in $Bi_4Sr_3Ca_3Cu_yO_x$ (y = 0-5) and $Bi_4Sr_3Ca_{3z}Li_zCu_4O_x$ (z = 0.1-1.0) semiconducting oxide glasses", J. Appl. Phys., 74(2), 931-938. https://doi.org/10.1063/1.355328
  19. Moulson, A.J. and Herbert, J.M. (2003), Electroceramics, 2nd Edn. John Wiley and Sons Ltd., England.
  20. Prasad, K., Suman, C.K. and Choudhary, R.N.P. (2006), "Electrical characterization of $Pb_2Bi_3SmTi_5O_{18}$ ceramic using impedance spectroscopy", Adv. Appl. Ceram., 105(5), 258-264. https://doi.org/10.1179/174367606X115940
  21. Salam, R. (1990), "Trapping parameters of electronic defects states in Indium tin oxide from ac conductivity", Phys. Status Solidi. A, 117(2), 535-540. https://doi.org/10.1002/pssa.2211170224
  22. Sharma, G.D., Roy, M. and Roy, M.S. (2003), "Charge conduction mechanism and photovoltaic properties of 1,2-diazoamino diphenyl ethane (DDE) based schottky device", Mater. Sci. Eng. B, 104(1-2), 15-25. https://doi.org/10.1016/S0921-5107(03)00260-5
  23. Umeri, A., Kuku, T.A., Scuor, N. and Sergo, V. (2008) "Raman investigation of the ageing of $Ni-BaTiO_3$ multilayer ceramic capacitors", J. Mater. Sci., 43(3), 922-926. https://doi.org/10.1007/s10853-007-2215-4
  24. Upadhyay, S., Sahu, A.K., Kumar, D. and Parkash, O. (1998), "Probing electrical conduction behavior of $BaSnO_3$", J. Appl. Phys., 84(2), 828-833. https://doi.org/10.1063/1.368143
  25. Yuan, Y., Zhang, S. and You, W. (2004), "Preparation of $BaTiO_3$-based X7R ceramics with high dielectric constant by nanometer oxides doping method", Mater. Lett., 58(12-13), 1959-1963. https://doi.org/10.1016/j.matlet.2003.12.010
  26. Yuan, Y., Du, M., Zhang, S. and Pei, Z. (2009), "Effects of $BiNbO_4$ on the microstructure and dielectric properties of $BaTiO_3$-based ceramics", J. Mater. Sci.-Mater. El., 20(2), 157-162. https://doi.org/10.1007/s10854-008-9674-5

Cited by

  1. Effect of Bi4Zr3O12on the properties of (KxNa1-x)NbO3based ceramics vol.5, pp.2, 2016, https://doi.org/10.12989/amr.2016.5.2.093
  2. Ba0.06(Na1/2Bi1/2)0.94TiO3–Ba(Fe1/2Ta1/2)O3: giant permittivity lead-free ceramics vol.28, pp.6, 2017, https://doi.org/10.1007/s10854-016-6121-x
  3. Dielectric relaxation in Ba(Y1/2Nb1/2)O3–BaTiO3 ceramics vol.25, pp.11, 2014, https://doi.org/10.1007/s10854-014-2244-0
  4. Structural, FTIR and ac conductivity studies of NaMeO3(Me ≡ Nb, Ta) ceramics vol.2, pp.3, 2013, https://doi.org/10.12989/amr.2013.2.3.173
  5. Electrical Conduction in (Na0.5Bi0.5)1−xBaxTiO3  (0≤x≤1) Ceramic by Complex Impedance/Modulus Spectroscopy vol.2013, 2013, https://doi.org/10.1155/2013/369670
  6. Dielectric relaxation and study of electrical conduction mechanism in BaZr0.1Ti0.9O3 ceramics by correlated barrier hopping model vol.36, pp.1, 2018, https://doi.org/10.1515/msp-2018-0013