• 제목/요약/키워드: AC electric railway

검색결과 129건 처리시간 0.024초

교류 전기철도 시스템의 해석에 적합한 조류계산 기법 및 STATCOM을 적용한 전압 강하 개선 연구 (A Study on a New Power Flow Method for Analysis of AC Electric Railway System and Improvement of Voltage Drop Using a STATCOM)

  • 백정명;이병하
    • 전기학회논문지
    • /
    • 제56권4호
    • /
    • pp.669-676
    • /
    • 2007
  • This paper presents a new power flow method to analyze the AC electric railway system effectively in both cases of traction and regenerative braking of the trains. The algorithm to easily solve the power flow of the AC electric railway system with the trains of regenerative braking from the system without a train of regenerative braking is derived. Using this new power flow method, the voltage characteristics of a typical AC electric railway system is easily analyzed in both cases of traction and regenerative braking of the trains. We show that the presented method can be applied effectively in order to analyze the AT-fed AC electric railway system in both cases of traction and regenerative braking of the trains. A STATCOM(Static Synchronous Compensator) is applied to the system in order to improve the voltage drop problem and this case is also analyzed to show the effect of STATCOM.

철도 급전계통 해석을 위한 컨버터 기반 부하 모델링 (Modeling of Converter-based Single-phase Load for Analysis of AC Substation System of Electric Railway)

  • 손호익;유형준;김학만
    • 전기학회논문지
    • /
    • 제61권12호
    • /
    • pp.1959-1963
    • /
    • 2012
  • Since electric railway load is variable largely due to starting and braking characteristics as well as various operation patterns, load modeling is not easy but complicated. For this reason, a simple technique for modeling of electric railway load of is required to analyze the AC substation system of electric railway. In this paper, a modeling technique of converter-based electric railway load is proposed and is tested using nonlinear loads on Matlab/Simulink.

A Novel Fault Location Scheme on Korean Electric Railway System Using the 9-Conductor Representation

  • Lee, Chang-Mu;Lee, Han-Sang;Yoon, Dong-Hee;Lee, Han-Min;Song, Ji-Young;Jang, Gil-Soo;Han, Byung-Moon
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권2호
    • /
    • pp.220-227
    • /
    • 2010
  • This paper presents a novel fault location scheme on Korean AC electric railway systems. On AC railway system, because of long distance, 40[km] or above, between two railway substations, a fault location technique is very important. Since the fault current flows through the catenary system, it must be modeled exactly to analyze the fault current magnitude and fault location. In this paper, suggesting the novel scheme of fault location, a 9-conductor modeling technique including boost wires and impedance bonds is introduced based on the characteristics of Korean AC electric railway. After obtaining a 9-conductor modeling, the railway system is constructed for computer simulation by using PSCAD/EMTDC. By case studies, we can verify superiority of a new fault location scheme and propose a powerful model for fault analysis on electric railway systems.

Watt-Hour Metering Characteristics at Scott Transformer in AC Electric Railway Systems

  • Lee, Hansang;Lee, Kyebyung;Kim, Kisuk;Park, Yong-Up;Jeon, Young-Soo;Joo, Sung-Kwan;Jang, Gilsoo;Park, Chang-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.1398-1406
    • /
    • 2018
  • Owing to the consistent increase in accurate analysis issue for energy consumption of the AC electric railway systems, there is controversy about the adequacy of the present watt-hour metering configuration. Due to the unusual load characteristics and facilities, the discussions have not been active. Therefore, in order to achieve more accurate watt-hour metering for AC electric railway system, this paper proposes numerical formulas for watt-hour metering that reflects the highly-varying characteristics of the railway load and the structural characteristics of the Scott transformer. The proposed formulas have been verified by comparison with site-measured data, and a more suitable metering configuration for AC railway system has been proposed.

PSCAD/EMTDC를 활용한 COMTRADE 기반의 교류철도 급전계통 사고 데이터 분석에 관한 연구 (A Study of Analysis of Fault Data in AC Electrical Railway Power System Based on COMTRADE Using PSCAD/EMTDC)

  • 이지혜;민명환;안태풍;이병곤
    • 전기학회논문지
    • /
    • 제67권11호
    • /
    • pp.1542-1548
    • /
    • 2018
  • When any faults occurred in electrical railway system, operators need to analysis it quickly and accurately. Existing COMTRADE based analysis tools are not enough to analysis faults occurred in electrical railway system. In this paper, it presents some functions to fault analysis for electrical railway system based on fault data formatted COMTRADE. These functions are implemented in PSCAD/EMTDC and it can be shown that analyzed results against actual electrical fault cases which were occurred in the electrical railway power system.

FTA를 이용한 교류전철변전소의 신뢰도 분석 (Reliability Analysis of AC Railway Substation by using FTA)

  • 구본희;차준민;김형철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.248-254
    • /
    • 2008
  • Electric railway system consists of traction power system, rolling stock, track, and overhead line system. A railway substation transforms the electric power transmitted from a electric power company and supply it to the railway power system for the operation of traction system.. It is very important to prevent a possible accident and keep the security of electric power system. This paper proposes a reliability analysis of AC railway substation by using Fault Tree Analysis(FTA). Failure rates of each equipment of railway substation are used to evaluate the reliability of railway substation. The analyzed results can be used to improve the system reliability. FTA is performed by the commercialized program of Relex(Ver. 7.7).

  • PDF

Single-phase Cascaded H-bridge Multilevel Active Power Filters in AC Electric Railway Systems

  • Wu, Liran;Wu, Mingli
    • Journal of Power Electronics
    • /
    • 제17권3호
    • /
    • pp.788-797
    • /
    • 2017
  • The power quality of AC electric railways has become an issue worthy of more and more concern. Many active compensators based on power converters have been proposed, but with complex transformers or coupled branches. This paper presents a single-phase cascaded H-bridge multilevel active power filter (APF), which can directly connect to the 27.5-kV power supplies to deal with power quality problems. According to field measured data, the load characteristics are analyzed, and the system configuration and control system are designed based on the load characteristic analysis. Finally, simulation and experimental results verify the effectiveness of the proposed APF system, considering some problems such as the supply voltage fluctuations and transient inrush currents in AC electric railway systems.

Development of AC/DC Hybrid Simulation for Operator Training Simulator in Railway System

  • Cho, Yoon-Sung;Lee, Hansang;Jang, Gilsoo
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권1호
    • /
    • pp.52-59
    • /
    • 2014
  • Operator training simulator, within a training environment designed to understand the principles and behavior of the railway system with respect to operator's entries and predefined scenario, can provide a very strong benefit in facilitating operators' handling undesired operations. This simulator consists of computer system and applications, and the purpose of applications is to generate the power and voltage and analyze the AC substation and DC railway, respectively. This paper describes a novel approach to the new techniques for AC/DC hybrid simulation for the operator training simulator in the railway system. We first propose the structure the database of railway system. Then, topology processing and power flow using a linked-list method based on the proposed database, full or decoupled newton-rapshon methods are presented. Finally, the interface between the analysis for AC substation using a newton-rapshon method and the analysis for DC railway system using a time-interval power flow method is described. We have verified and tested the developed algorithm through the extensive testing for the proposed test system. To demonstrate the validity of the developed algorithm, comparative simulations between the proposed algorithm and PSS/E for the test system were conducted.

9도체 전기철도 모델링을 이용한 고장점 표정 방안 연구 (A Study for Fault Location Scheme Using the 9-Conductor Modeling of Korean Electric Railway System)

  • 이한상;이장무;이한민;장길수;창상훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.411-413
    • /
    • 2006
  • This paper presents a novel fault location scheme on Korean AC electric railway systems. On AC railway system, because there is a long distance, 40 km or longer, between two railway substations, a fault location technique is very important. Since the fault current flows through the catenary system, the catenary system must be modeled exactly to analyze fault current magnitude and fault location. In this paper, before suggestion for the novel scheme of fault location, a 9-conductor modeling technique that includes boost wires and impedance bonds is introduced, based on the characteristics of Korean AC electric railway. After obtaining a 9-conductor modeling, the railway system is constructed for computer simulation by using PSCAD/EMTDC. By case studies, we can verify superiority of a new fault location scheme and suggest a powerful model for fault analysis on electric railway systems.

  • PDF

전기차 충전시스템을 위한 도시철도 DC 전력의 활용방안 연구 (A study on the application of urban railway DC electric power for electric car charging system)

  • 강현일;김윤식;심재석;임형길;유기선;이기승
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.1855-1860
    • /
    • 2010
  • Electric vehicles have reached a new level of development with introductions by Chrysler, Ford, Honda and Toyota. Today's charging technology includes conductive and inductive charging systems. There are three standardized charging levels: Level 1: charging can be done from a standard, grounded AC 120V, 3-prong outlet available in all homes; Level 2: charging is at AC 240V, 40 amp charging station with special consumer features to make it easy and convenient to plug in and charge EVs at home or at an EV charging station; Level 3: a high-powered charging "fast charge" technology currently under development that will provide a charge in less than 15 minutes. The incoming AC power is converted to DC and stored in the vehicle's batteries. In this paper, we investigated the application of urban railway DC electric power for electric car charging system.

  • PDF