• Title/Summary/Keyword: AC Voltage

Search Result 2,666, Processing Time 0.029 seconds

Voltage Control Strategy of new 3-phase Line-Interactive UPS System using AC Line Reactor and Parallel-Series Active Filter (AC 라인 리액터와 병렬 및 직렬 능동필터를 가지는 새로운 3상 Line-Interactive UPS 시스템의 전압제어 방식)

  • Ji, Jun-Keun;Kim, Jang-Hwan;Sul, Seung-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.538-546
    • /
    • 2007
  • A new 3-phase line-interactive UPS(Uninterruptible Power Supply) system with parallel-series active power-line conditioning capability using AC line reactor and two four-leg PWM VSCs(Voltage Source Converters) was introduced recently. In this paper, the strategy of voltage control in suggested UPS system is explained. The objective of proposed voltage controllers in parallel(shunt) and series PWM VSC is to guarantee satisfactory characteristics in steady state and transient state. Therefore the experimental results to prototype UPS system having power rating of 60kVA is shown to prove the verification of voltage control strategy.

Insulation Breakdown Properties of AC and DC according to Curvature Variation of PAI Organic/Inorganic Hybrid Coils (PAI 유/무기 하이브리드코일의 곡률변화에 따른 AC 및 DC 절연파괴 특성)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1721-1726
    • /
    • 2016
  • 4-types of coils were prepared by coating with polyamideimide (PAI) organic/inorganic hybrid. One type was made with original PAI vanish and the other 3-types were made of double layers, that was to say, high flexural PAI layer and high anti-corona PAI/nanosilica (15 wt%) layer. Drying temperature (T/D) were $220^{\circ}C$, $240^{\circ}C$, and $260^{\circ}C$, respectively and rectangular type coil for high-voltage rotating machine was used. DC and AC electrical breakdown tests were carried out in order to study the insulation properties according to T/D temperature and coil curvature (5, 15, and $25mm{\Phi}$). As the curvature increased, electrical breakdown voltage decreased and as T/D temperature decreased, electrical breakdown voltage increased.

A Study on the Effect of AC Electric Field on the Liftoff Characteristics of Turbulent Propane Jets. (교류전기장이 프로판 난류제트 화염의 부상특성에 미치는 영향)

  • Park, Chul-Soo;Lee, Sang-Min;Cha, Min-Suk;Chung, Suk-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.83-88
    • /
    • 2004
  • High voltage AC electric field has been applied to turbulent propane jets to investigate the effect of electric field on liftoff characteristics. Liftoff velocity and liftoff height have been measured by varying the applied voltage and frequency. Liftoff velocities were delayed and liftoff heights were reduced by applying AC, not by DC. The electric effect became disappeared with further increasing jet velocities, which shows that the effect can be explained by the balance between inertia force and electric force. The flame stabilization effect was intensified as either applied voltage or frequency increased. Plasma streamers were generated between the flame and the jet under high voltage conditions. Liftoff velocity in the absence of plasma can be well correlated by the function of voltage and frequency.

  • PDF

Switching Signal Patterns to Prevent Short Circuit of AC Choppers (교류초퍼에서 단락사고 방지를 위한 스위칭 신호 패턴)

  • Jang, Do-Hyeon;Yeon, Jae-Eul
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.9
    • /
    • pp.445-452
    • /
    • 2001
  • Two switching signal patterns are proposed to prevent short circuit of PWM ac choppers. The voltage detection method and the current detection method are proposed to execute two switching signal patterns. In the voltage detection method, the dead-time has to be inserted to the switching signals after polarity of input voltage is checked by voltage transducer at input side. In the current detection method, the direction of load current is checked by current transducer at output side, and the dead-time delay is not considered. Controlling circuit built by current detection method is simple because the dead-time delay is considered. The experimental results are presented to prevent short circuit of ac chopper safely.

  • PDF

Proper Cable Arrangement Selection by Induced Voltage Evaluation of DC Cable in AC/DC Hybrid Combined Transmission Systems (AC/DC 하이브리드형 혼합송전계통에서 DC 케이블의 유도전압평가에 의한 적정배열 선정)

  • Son, Yong-Dae;Lee, Jong-Beom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.680-688
    • /
    • 2015
  • Hybrid type combined transmission systems is being operated by AC and DC line at the same space will be expanded instead of the overhead line. However, such hybrid type combined system has problem like the arrangement selection of DC cable for effective system operation. In this paper, to select the proper arrangement of DC cable, induced voltage of DC cable influenced by AC cable was analyzed in case of several type arrangement of DC cable. Such induced voltage is in detailed analyzed not only in case of steady, but transient state. The arrangement which has the lowest induced voltage is selected as the proper one. EMTP/ATPDraw is used for modeling and analysis of hybrid type combined transmission system.

An Economic Analysis of Potential Cost Savings from the Use of Low Voltage DC (LVDC) Distribution Network

  • Hur, Don;Baldick, Ross
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.812-819
    • /
    • 2014
  • The proposed technical work attempts to compare the two key technologies of power distribution, i.e. direct current (DC) and alternating current (AC) in a fiscal manner. The DC versus AC debate has been around since the earliest days of electric power. Here, at least four types of a low voltage DC (LVDC) distribution are examined as an alternative to the existing medium voltage AC (MVAC) distribution with an economic assessment technique for a project investment. Besides, the sensitivity analysis will be incorporated in the overall economic analysis model to cover uncertainties of the input data. A detailed feasibility study indicates that many of the common benefits claimed for an LVDC distribution will continue to grow more profoundly as it is foreseen to arise with the increased integration of renewable energy sources and the proliferation of energy storage associated with the enhanced utilization of uninterruptible power supply (UPS) systems.

Study on the effect of DC voltage in oil-immersed transformer insulation system (DC 전압이 유입변압기 절연시스템에 미치는 영향에 관한 연구)

  • Jang, Hyo-Jae;Kim, Yong-Han;Seok, Bok-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1552-1553
    • /
    • 2011
  • The HVDC transformer which is one of the main equipments for HVDC(High Voltage Direct Current) electric power transmission systems is exposed to not only AC voltage but also the inflowing DC voltage which comes from the DC-AC converter systems. Therefore, the HVDC transformer insulation system is required to withstand the electric field stress under AC, DC and DC polarity reversal conditions. However the electric field distributions under those conditions are different because the AC electric field and DC electric field are governed by permittivity and conductivity, respectively. In this study, the changes of electric potential and electric field of conventional AC transformer insulation system under DC polarity reversal test condition were analyzed by FEM(Finite Element Method). The DC electric field stress was concentrated in the solid insulators while the AC electric field stress was concentrated in the mineral oil. In addition, the electric stress under that condition which is affected by the surface charge accumulation at the interfaces between insulators was evaluated. The stress in some parts could be higher than that of AC and DC condition, during polarity reversal test. The result of this study would be helpful for the HVDC transformer insulation system design.

  • PDF

Analysis of Switching Surge Over-voltage in AC/DC Hybrid Transmission Lines (AC/DC 병가선로의 개폐서지 과전압 해석)

  • Yoo, Seong-Soo;Shin, Koo-Yong;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.459-466
    • /
    • 2022
  • Switching surges are a common type of phenomenon that occur on any sort of power system network. These are more pronounced on long transmission lines and in high voltage converter stations. At AC/DC hybrid transmission lines, the insulation coordination of such lines is mainly dictated by the peak level of switching surges, the most dangerous of which include three phase line energization and AC/DC converter station. The power system structure consist of AC/DC hybrid transmission lines which is combination of AC 765kV and ±500kV HVDC 1 bipole system for contingency analysis. The power system under study and its components are simulated using EMTDC software package, the effects of the various AC/DC mixing power lines are reviewed. The developed models of EMTDC conversion lines based on combination of AC/DC system are simulated and the characteristics of switching surge over-voltage from its results are discussed.

A Quasi Z-Source AC-AC Converter for Low Voltage Smart Distribution System (저전압 스마트 배전시스템을 위한 Quasi Z-소스 AC-AC 컨버터)

  • Yoo, Dae-Hyun;Eom, Jun-Hyun;Jung, Young-Gook;Lim, Young-Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.273-274
    • /
    • 2013
  • 본 논문에서는 저전압 스마트 배전시스템을 위한 Quasi Z-소스 AC-AC 컨버터를 제안하였다. 제안된 시스템은 Quasi Z-소스 AC-AC 컨버터의 교류 입력 전압에 대하여, 동상의 출력 전압을 부스트 하고, 역상의 출력 전압을 벅-부스트하는 고정 주파수 가변 전압 VVCF(Variable Voltage Constant Frequency)의 출력특성을 가지고 있다. 또한 Quasi Z-소스 AC-AC 컨버터의 shoot-through 스위치 단에 벅-컨버터를 연결하여 Quasi Z-소스 AC-AC 컨버터의 동작과 함께 저압의 직류 전압을 출력 할 수 있다. PSIM 시뮬레이션과 실험에 의하여, 제안된 시스템이 동상 부스트 모드로 동작하는 경우, PI 제어된 벅 컨버터에 의하여 직류 전압을 출력할 수 있음을 확인하였다.

  • PDF

Dual-Slope Ramp Reset Waveform to Improve Dark Room Contrast Ratio in AC PDPs

  • Lim, Jae-Kwnag;Cho, Byung-Gwon;Tae, Heung-Sik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.639-642
    • /
    • 2005
  • A new dual-slope ramp (DSR) reset waveform is proposed to improve the dark room contrast ratio in AC-PDPs. The proposed reset waveform has two different voltage slopes during a ramp-up period. The first voltage slope is lower than the conventional ramp voltage slope, causing a reduction in the background luminance, whereas the second voltage slope is higher than the conventional ramp voltage slope, causing an increase in the background luminance. Thus, a bias voltage is also applied during the second voltage-slope period to adjust the background luminance and address discharge characteristics. As a result, the proposed dual-slope reset waveform can lower the background luminance, thereby improving the high dark room contrast ratio of an AC-PDP without reducing the address voltage margin

  • PDF