• Title/Summary/Keyword: AC Voltage

Search Result 2,665, Processing Time 0.028 seconds

Development of an Input Impedance Evaluation of the AC-DC Transfer Standard for Low Level AC Voltage Standard (교류 저전압 표준용 교류-직류 변환기의 입력임피던스 평가기술 개발)

  • Kwon, Sung-Won;Jung, Jae-Kap;Lee, Sang-Hwa;Kim, Myung-Soo;Kim, Han-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.229-234
    • /
    • 2008
  • An AC-DC transfer standard(TS) is used for the AC voltage standard in the range of 2 mV to 1000 V below 1 MHz. Micro-potentiometer(${\mu}Pot$) is used to evaluate the ac-dc transfer difference(ADD) of the TS below 200 mV range. The ADD of the TS were changed by the loading effect caused from the input impedance change of the TS depend on frequency. An input impedance evaluation technique of the TS using ${\mu}Pot$ has been developed.

A novel AC-DC switching technology without inductors (인덕터를 사용하지 않는 새로운 AC-DC 변환 방식)

  • Yoon, Jin-Han;Cha, Hyeong-Woo;Lee, Man-Seop;Cho, Young-Chang
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.138-140
    • /
    • 2007
  • A novel AC-DC switching technology is suggested without inductors for one-chip semiconductor. The suggested converter consists of a rectifier diodes, AC source level detector, switching control, detector of over-current and voltage, feedback controller and switching block, The key technology of the proposed AC-DC converting methode is detecting of the low level voltage for AC voltage, power control transistor and rectifying of DC level. The measurement results with commercial devices show that the converter has power efficiency of 66.5% for DC 12V 0.24A and the standby power is 49.58mW at AC 110V.

  • PDF

Dynamic Voltage Margin of AC PDP with the Narrow Erase Pulse Method (세폭소거 펄스 방식을 적용한 AC PDP에서의 동특성 전압 마진)

  • An, Yang-Ki;Yoon, Dong-Han
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.11
    • /
    • pp.541-545
    • /
    • 2002
  • This paper proposes the new narrow erase method to erase wall charges formed in an AC plasma display panel (PDP) cell. In the proposed method, pulse timing of switch at the sustain period is adjusted for inducing, a weak discharge. Then, after the narrow erase, the voltage of the X electrode is set to differ from that of the Y electrode. For the proposed method, the measured maximum address voltage margin was 38.3V at Y_Rest voltage of 100V and sustain voltage of 180${\sim}$185V. However, for the conventional method, in which the X and Y electrodes are set to be of equal voltage after the narrow erase, the measured maximum address voltage margin was 31.3V at Y_Rest voltage of 150V and sustain voltage of 180V. This result shows that the measured maximum voltage margin for the proposed method is about 7V(22%) higher than that for the conventional method.

Novel Buck Mode Three-Level Direct AC Converter with a High Frequency Link

  • Li, Lei;Guan, Yue;Gong, Kunshan;Li, Guangqiang;Guo, Jian
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.407-417
    • /
    • 2018
  • A novel family of Buck mode three-level direct ac converters with a high frequency link is proposed. These converters can transfer an unsteady high ac voltage with distortion into a regulated sinusoidal voltage with a low THD at the same frequency. The circuit configuration is constituted of a three-level converter, high frequency transformer, cycloconverter, as well as input and output filters. The topological family includes forward, push-pull, half-bridge, and full-bridge modes. In order to achieve a reliable three-level ac-ac conversion, and to overcome the surge voltage and surge current of the cycloconverter, a phase-shifted control strategy is introduced in this paper. A prototype is presented with experimental results to demonstrate that the proposed converters have five advantages including high frequency electrical isolation, lower voltage stress of the power switches, bi-directional power flow, low THD of the output voltage, and a higher input power factor.

Electrical Behaviors of ZnO Elements under Combined Direct and Alternating Voltages

  • Yang, Soon-Man;Lee, Bok-Hee;Paek, Seung-Kwon
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.111-117
    • /
    • 2009
  • This paper presents the characteristics of leakage currents flowing through zinc oxide (ZnO) surge arrester elements under the combined direct-current (DC) and 60 Hz alternating-current (AC) voltages. The current-voltage characteristic curves (I-V curves) of the commercial ZnO surge arrester elements were obtained as a function of the voltage ratio a. At constant peak value of the combined DC and AC voltage, the resistive leakage current of the ZnO blocks was significantly increased as the voltage ratio $\alpha$ increased. The I-V curves under the combined DC and AC voltages were placed between the pure DC and AC characteristics, and the cross-over phenomenon in both the I-V curves and R-V curves was observed at the low current region. The ZnO power dissipation for DC voltages was less than that for AC voltage in the pre-breakdown region and reversed at higher voltages.

Method for Improving Overmodulation Performance of an Inverter for the Enhanced Output Torque of AC Motors (교류 전동기의 출력 토크 향상을 위한 인버터의 과변조 성능 개선 방법)

  • Jeong, Hye-In;Kim, Sang-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.4
    • /
    • pp.273-278
    • /
    • 2019
  • This study proposes a method for improving the overmodulation performance of a three-phase inverter to obtain an enhanced output torque for the AC motors. In the inverter-fed AC motor drives, the output torque of the motor can be enhanced by utilizing the overmodulation region as well as the linear modulation regions of the inverter. The overmodulation method is used for this overmodulation operation of the inverter. However, the voltage gain, the ratio of the output voltage of the inverter to the reference voltage achieved by the conventional overmodulation methods becomes nonlinearly smaller than unity. Therefore, the effect of improving the output torque of the AC motors is insignificant even when the overmodulation region is utilized. In this study, we propose a method that improves the overmodulation performance of the inverter by compensating the limited amount of the reference voltage in the overmodulation operation to enhance the output torque of the AC motors. The effectiveness of the proposed method is verified through the simulations and experiments with an 800 W permanent magnet synchronous motor.

Design of Buck-Boost DC-AC Inverter Using Microcontroller (마이크로컨트롤러를 이용한 벅-부스트 DC-AC 인버터 설계)

  • Park, Jong-Gyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.10
    • /
    • pp.45-51
    • /
    • 2009
  • The single phase buck-boost DC-AC inverter generates an alternating output voltage as the differential voltage of two DC-DC individual buck-boost converters. Two converters are driven with DC-biased and $180[^{\circ}]$ phase-shifted sinusoidal references. The peak value of the inverter alternating output voltage does not depend on the direct input voltage. In this paper, single phase buck-boost DC-AC inverter is designed and implemented on a prototype with digital controller using a microcontroller.

AC loss Measurement of Superconducting Power Cable (초전도 전력케이블의 교류손실 측정)

  • Hwang, Si-Dole;Hyun, Ok-Bae;Sohn, Song-Ho;Choi, Hyung-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.524-526
    • /
    • 2005
  • As a research activity of the project of "Verification Test of Superconducting Power Cable", we measured the AC loss of a short length superconducting power cable. The rating and the length of the cable were 22.9kV, 1,250A and 2.2m. The voltage taps for measuring the AC loss were attached to both ends of the conductor of the superconducting cable. Through the voltage taps and a lock-in amplifier we measured the in-phase component of the voltage($V_x$) with the load current(I). The AC loss was measured by multiplying the in-phase component of the voltage($V_x$) by the load current(I). The value of the AC loss of the superconducting power cable was 1.18W/m/phase/kA at 77.3K, 1atm.

  • PDF

A Study on Synchronized AC Power Source Voltage Regulator of Voltage Fed Inverter using a Photovoltatic effect (PV효과를 이용한 전압형 인버어터 전원동기 전압 조정기에 관한 연구)

  • Hwang, Lak-Hoon
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.8
    • /
    • pp.120-129
    • /
    • 1998
  • In this paper represented uninterruptible power sypply(UPS) equipment maintaining constant output voltage, using a pulse width modulation(PWM) voltage fed inverter, as power source disconnection, voltage variation and output current variation with load variation. This system is driven by being synchronized voltage fed inverter and AC source, and in the steady state of power source charge battery connected to DC side with solar cell using a Photovoltaic (PV) that it was so called constant voltage charge. In addition, better output waveform was generated because of PWM(pulse width Modulation) method, and it was Proved to test by experiment maintained constant output voltage regardless of AC source disconnection, load variation, and voltage variation of AC power source.

  • PDF

CIM Based Zero Voltage Switching of Energy Recovery Sustain Driver for AC PDPs with Reduced Sustain Voltage (CIM을 이용한 유지구동전압 반감형 AC PDP용 에너지 회수 구동회로의 영전압 스위칭)

  • Lim, Seung-Bum;Jung, Dae-Tack;Hong, Soon-Chan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.378-385
    • /
    • 2007
  • AC PDP has disadvantages that power consumption and sustain voltage are high. An energy recovery circuit for AC PDPs with reduced sustain voltage was proposed to solve these disadvantages. However, the circuit has disadvantage that the switching elements are performed hard switching at the start point of discharge and sustaining region. The reason is that the panel voltage is lower than sustain voltage at that point. In this paper, we propose the improved driving method that switching devices are operated with ZVS by using CIM(Current Infection Method) also at that point. CIM region is designed by theoretical circuit analysis. Finally, the validity of the proposed driving method is verified by the simulations and experimentation.