• 제목/요약/키워드: AC Power Source

검색결과 524건 처리시간 0.024초

The Development of the ±80kV 60MW HVDC System in Korea

  • Park, Kyoung-Ho;Baek, Seung-Taek;Chung, Yong-Ho;Jang, Gil-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.594-600
    • /
    • 2017
  • HVDC transmission systems can be configured in many ways to take into account cost, flexibility and operational requirements. [1] For long-distance transmission, HVDC systems may be less expensive and suffer lower electrical losses. For underwater power cables, HVDC avoids the heavy currents required to charge and discharge the cable capacitance of each cycle. For shorter distances, the higher cost of DC conversion equipment compared to an AC system may still be warranted, due to other benefits of direct current links. HVDC allows power transmission between unsynchronized AC transmission systems. Since the power flow through an HVDC link can be controlled independently of the phase angle between the source and the load, it can stabilize a network against disturbances due to rapid changes in power. HVDC also allows the transfer of power between grid systems running at different frequencies, such as 50 Hz and 60 Hz. This improves the stability and economy of each grid, by allowing the exchange of power between incompatible networks. This paper proposed to establish Korean HVDC technology through a cooperative agreement between KEPCO and LSIS in 2010. During the first stage (2012), a design of the ${\pm}80kV$ 60MW HVDC bipole system was created by both KEPCO and LSIS. The HVDC system was constructed and an operation test was completed in December 2012. During the second stage, the pole#2 system was fully replaced with components that LSIS had recently developed. LSIS also successfully completed the operation test. (2014.3)

Transient Performance of a Hybrid Electric Vehicle with Multiple Input DC-DC Converter

  • Nashed, Maged N.F.
    • Journal of Power Electronics
    • /
    • 제3권4호
    • /
    • pp.230-238
    • /
    • 2003
  • Electric vehicles (EV) demands for greater acceleration, performance and vehicle range in pure electric vehicles plus mandated requirements to further reduce emissions in hybrid electric vehicles (HEV) increase the appeal for combined on-board energy storage systems and generators. And the power electronics plays an important role in providing an interface between fuel cells (FC) and loads. This paper deals with a multiple input DC-DC power converter devoted to combine the power flowing of multi-source on energy systems. The multi-source is composed of (i) FC system as a prime power demands, (ii) super capacitor banks as energy storage devices for high and intense power demands, (iii) superconducting magnetic energy storage system (SMES), (iv) multiple input DC-DC power converter and (v) a three phase inverter-fed permanent magnet synchronous motor as a drive. In this system, It is used super capacitor banks and superconducting magnetic energy replaces from the battery system. The modeling and transient performance simulation is effective for reducing transient influence caused by sudden charge of effective load. The main purpose of power electronic converters is to convert the DC power output from the fuel cell and other to a suitable AC voltage, which can be connected to electric loads directly (PMSM). The fuel cell and other output is connected to the DC-DC converter, which regulates the DC link voltage.

A Study on Improvement of Powerfactor and Source Waveform Converter System of Power Supply for HVDC Transmission (HVDC 송전을 위한 전원용 컨버터 시스템의 역률 및 파형개선에 관한 연구)

  • Hwang, Lak-Hoon;Lee, Chun-Sang;Lee, Sang-Yong;Na, Seng-Kwon;Cho, Moon-Taek
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 A
    • /
    • pp.395-397
    • /
    • 1999
  • This paper presents a method of improving the power factor and the waveform of A.C line currents and the out waveforms of AC to DC fully bridge converter systems which is achieved by connecting converters in series and parallel. The results of simulation show that the power factor and the source voltage and current waveforms are improved by the method of connecting converter in series, and the controlled input voltage and current waveform using a current limit controller.

  • PDF

Control Strategy Compensating for Unbalanced Grid Voltage Through Negative Sequence Current Injection in PMSG Wind Turbines

  • Kang, Jayoon;Park, Yonggyun;Suh, Yongsug;Jung, Byoungchang;Oh, Juhwan;Kim, Jeongjoong;Choi, Youngjoon
    • Proceedings of the KIPE Conference
    • /
    • 전력전자학회 2013년도 전력전자학술대회 논문집
    • /
    • pp.244-245
    • /
    • 2013
  • This paper proposes a control algorithm for permanent magnet synchronous generator with a back-to-back three-level neutral-point clamped voltage source converter in a medium-voltage offshore wind power system under unbalanced grid conditions. The proposed control algorithm particularly compensates for the unbalanced grid voltage at the point of common coupling in a collector bus of offshore wind power system. This control algorithm has been formulated based on the symmetrical components in positive and negative rotating synchronous reference frames under generalized unbalanced operating conditions. Instantaneous active and reactive power are described in terms of symmetrical components of measured grid input voltages and currents. Negative sequential component of ac input current is injected to the point of common coupling in the proposed control strategy. The amplitude of negative sequential component is calculated to minimize the negative sequential component of grid voltage under the limitation of current capability in a voltage source converter. The proposed control algorithm makes it possible to provide a balanced voltage at the point of common coupling resulting in the generated power of high quality from offshore wind power system under unbalanced network conditions.

  • PDF

Test results of small scale changeover system using in neutral section for AC feeding system (축소형 교류급전시스템 절연구간 자동절체장치 성능시험)

  • Jang, Dong-Uk;Han, Moon-Seob
    • Proceedings of the KSR Conference
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.948-953
    • /
    • 2011
  • In AC railway feeding system, three phase received from the network is changed to two phase power sources with different phases. The main circuit breaker installed train is automatically open by track signal when the train passes the neutral section. In order to continuously supply power source to train, the changeover system was used in Japan. Therefore, the train is able to operate under powering condition when it was passing through the neutral section. We investigated the control method to reduce the inrush current flowing main transformer in train. To examine the inrush current and operate the static semiconductor switch such as thyristor, we manufactured the small scale the changeover system and carried out performance tests.

  • PDF

The Compensation Method of the Modulation-delay for the Voltage type Dual PWM Converter and Composition of the Instantaneous Current Controller (전압형 Dual PWM 컨버터의 변조각 지연에 따른 보상법 및 순시전류 제어기 구성)

  • Chung, Yon-Tack;Kim, Won-Chul;Lee, Sa-Young;Chun, Ji-Yong;Kim, Hyeun-Bong;Lee, Keun-Hong
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 A
    • /
    • pp.369-372
    • /
    • 1994
  • In this paper, a voltage type dual PWM converter which achives the bidirectional power flow between a AC supply and a DC bus voltage is described. In PWM modulator, there exist a time difference between the sampling time and carrier wave, it achieves stable modulation even the disturbance in the synchronous AC source voltage. And this paper proposes the compensation method and the control method related a disturbance of synchronous signal using the low pass filter and phase shifter for the stable modulation. As a result the voltage type dual PWM converter makes the imput current wave as sinusoid, and performs the high power factor driving.

  • PDF

A Study on the novel voltage converter for PWM control method (PWM 제어방식에 의한 새로운 전압형 컨버어터에 관한 연구)

  • Chung, Y.T.;Seo, Y.S.;Han, K.H.;Lee, S.Y.;Kim, H.W.;Lee, I.S.
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 B
    • /
    • pp.999-1001
    • /
    • 1992
  • This paper describes the voltage type PWM converter. Input AC current is to be sinusoidal and AC input voltage is determined by controlling the phase of the source and converter properly. By corresponding the phase of input voltage to that of base current, DC constant voltage Is to be output with high power factor driving. Also it is possible to be leading or lagging power factor driving. Optimum driving is performed by controlling the current instantaneously in the steady state or transient state.

  • PDF

AC Power Filter Using Voltage-Source PWM Converter (전압형 PWM 컨버터를 이용한 교류 전력필터)

  • Kim, Han-Sung;Choe, Gyu-Ha;Lee, Jea-Pil;Jeon, Ho-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1988년도 추계학술대회 논문집 학회본부
    • /
    • pp.422-425
    • /
    • 1988
  • The active filter system for harmonic current compensation is presented in this paper. The active filter compensates both the harmonic currents and the reactive power by injecting the PWM current to the ac line. This paper describes the principle of harmonic current compensation, the calculation circuits for the harmonic currents to be injected, also the experimental results are shown to verify the theory proposed in this paper.

  • PDF

Arc Extinguishment for Low-voltage DC (LVDC) Circuit Breaker by PPTC Device (PPTC 소자를 사용한 저전압 직류차단기의 아크소호기술)

  • Kim, Yong-Jung;Na, Jeaho;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • 제23권5호
    • /
    • pp.299-304
    • /
    • 2018
  • An ideal circuit breaker should supply electric power to loads without losses in a conduction state and completely isolate the load from the power source by providing insulation strength in a break state. Fault current is relatively easy to break in an Alternating Current (AC) circuit breaker because the AC current becomes zero at every half cycle. However, fault current in DC circuit breaker (DCCB) should be reduced by generating a high arc voltage at the breaker contact point. Large fire may occur if the DCCB does not take sufficient arc voltage and allows the continuous flow of the arc fault current with high temperature. A semiconductor circuit breaker with a power electronic device has many advantages. These advantages include quick breaking time, lack of arc generation, and lower noise than mechanical circuit breakers. However, a large load capacity cannot be applied because of large conduction loss. An extinguishing technology of DCCB with polymeric positive temperature coefficient (PPTC) device is proposed and evaluated through experiments in this study to take advantage of low conduction loss of mechanical circuit breaker and arcless breaking characteristic of semiconductor devices.

DSP BASED CONTROL OF HIGH POWER STATIC VAR COMPENSATOR USING NOVEL VECTOR PRODUCT PHASE LOCKED LOOP (새로운 벡터적 PLL를 이용한 대용량 무효전력 보상기(SVC)의 DSP 제어)

  • Jung, Gu-H.;Cho, Guk-C.;Chae, Cyun;Cho, Gyu-H.
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.262-264
    • /
    • 1996
  • This paper presents a new dual loop control using novel vector phase locked loop(VP-PLL) for a high power static var compensator(SVC) with three-level GTO voltage source inverter(VSI). Through circuit DQ-transformation, a simple dq-axis equivalent circuit is obtained. From this, DC analysis is carried out to obtain maximum controllable phase angle ${\alpha}_{max}$ per unit current between the three phase source and the switching function of inverter, and AC open-loop transfer function is given. Because ${\alpha}_{max}$ becomes small in high power SVC, this paper proposes VP-PLL for more accurate $\alpha$-control. As a result, the overall control loop has dual loop structure, which consists of inner VP-PLL for synchronizing the phase angle with source and outer Q-loop for compensating reactive power of load. Finally, the validity of the proposed control method is verified through the experimental results.

  • PDF