• Title/Summary/Keyword: AC Power

Search Result 3,405, Processing Time 0.035 seconds

Development of Ultrasonic Sensor for Engine Condition Diagnosis of EDG (비상디젤발전기 엔진 상태진단 초음파 탐촉자 개발)

  • Lee, Sang-Guk;Choi, Kwang-Hee
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.31-35
    • /
    • 2013
  • The emergency AC power supply system of the nuclear power plant is designed to supply the power to the nuclear power plant at the emergency operating condition. The safety function of the diesel generator at the nuclear power plant is to supply AC electric power to the safety system whenever the preferred AC power supply is unavailable. The reliable operation of onsite standby diesel generator should be ensured by a condition monitoring system designed to maintain, monitor and forecast the reliability level of diesel generator. The purpose of this paper is to improve the existing ultrasonic sensor used for condition diagnosis of engine fuel pump and cylinder head for the accurate diagnosis in actual engine condition of emergency diesel generator(EDG). As a result of this study, we could design and develop much more reliable ultrasonic sensor than existing ones.

Input AC Voltage Sensorless Control Scheme for a Three-Phase PWM Rectifier in Wind Power Generation System

  • Wu, YanJun
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.472-476
    • /
    • 2012
  • In this paper, a sensorless control scheme for a three-phase bi-directional voltage-type PWM rectifier in wind power generation system that operates without the input AC voltage sensors (generator side) is described. The basic principles and classification of the PWM rectifier are analyzed, and then the three-phase mathematical model of the input AC voltage sensorless PWM rectifier control system is established. The proposed scheme has been developed in order to lower the cost of the three-phase PWM rectifier but still achieve excellent output voltage regulation, limited current harmonic content, and unity input power factor.

Study on Optimized Scheme of Reactive Power Compensation for Low Short-Circuit-Ratio HVDC System (저단락비 HVDC 시스템에서웨 무효편력수급 최적 방안 연구)

  • Baek Seung-Taek;Han Byung-Moon;Oh Sea-Seung;Jang Gil-Soo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.9
    • /
    • pp.434-440
    • /
    • 2005
  • This paper describes an optimized Scheme of reactive-power compensation for the low short-circuit-ratio AC system interconnected with the HVDC system. An HVDC system interconnected with tile low SCR AC system is vulnerable to the ac voltage variation, which brings about the commutation failure of the converter. This problem can be solved using optimized compensation of reactive power. In this study, a benchmark system for HVDC system interconnected with low SCR AC system is derived using PSS/E simulation. Then an optimized srheme for reactive power compensation was derived using integer programming. The feasibility of proposed scheme was analyzed through silnulations with PSS/E and PSCAD/EMTDC. The proposed scheme can compensate the reactive power accurately and minimize the number of switching for harmonic filters and shunt reactors.

A Study for Electric Field Intensity of AC/DC Hybrid Transmission Line using Reduced Scale Model (축소모델을 이용한 Hybrid 송전선로의 도체구성별 지표면 전계강도 특성 연구)

  • Lim, Jae-Seop;Shin, Koo-Yong;Kim, Young-Hong;Choi, In-Hyuk;Lee, Dong-Il
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.503-504
    • /
    • 2011
  • 주파수가 다른 계통을 연계하거나, 장거리 선로 운전시 손실이 낮은 HVDC 송전은 환경문제로 인한 민원으로 새로운 선로건설을 위한 부지확보가 전 세계적으로 어려운 실정이다. 이 문제를 해결할 수 있는 방안으로 기존의 AC선로에 DC를 적용하여 동일철탑에 AC와 DC 선로를 같이 설치하는 하이브리드(Hybird) 선로가 제시되었다. 그러나 AC와 DC가 공존한 상태에서의 전기환경기준이 제시되지 못하고 있는 실정이다. 따라서 본 논문에서는 국내에서 운용중인 345kV 2회선 철탑에 DC선로를 적용한 하이브리드 선로의 축소모델을 제작하였고, DC선로의 도체 구성별 하이브리드 선로의 이온류 특성을 시험하였다.

  • PDF

Elemination of Low Order Harmonics from STATCOM using SHE-PWM (SHE-PWM을 적용한 STATCOM에 의한 저차고조파 제거 방법)

  • Choi, Soon-Ho;Kim, Chan-Ki;Lee, Seong-Doo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.450-456
    • /
    • 2014
  • In HVDC converters that employ a line-commutated control, reactive power is absorbed by the rectifier and inverter terminals during AC/DC conversion. An AC filter usually consists of filters and large shunt capacitors to supply reactive power to the HVDC station. When STATCOM is used to supply reactive power to the HVDC system with AC filter, the low-order harmonics generated from STATCOM can result in a resonance between the shunt capacitor and AC network. Therefore, a control strategy based on selective harmonic elimination is adopted to minimize the low-order harmonics from STATCOM. The cancellation of harmonic instabilities is verified through simulations in PSCAD/EMTDC.

Resonance Device Design of Bidirectional DC-DC Converter for Active Power Decoupling of Photovoltaic AC Module (태양광 AC 모듈의 능동 디커플링을 위한 양방향 DC-DC 컨버터의 공진 소자 설계)

  • Kim, Mi-Na;Noh, Yong-Su;Kim, Jun-Gu;Lee, Tae-Won;Jung, Yong-Chae;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.103-104
    • /
    • 2012
  • In the AC module system, mismatch problem between AC power and constant input power is occurred. To solve this problem, electrolytic capacitor is utilized for diminishing power pulsation in PV side. However, it has disadvantages of low life span and weak in temperature. Decoupling method has been studied to reduce the capacitance and replaces electrolytic capacitor to film capacitor. This paper proposes design method for decoupling circuit which bidirectional DC-DC converter using soft switching. Proposed system is verified by design optimization and simulation results.

  • PDF

A Study on Synchronized AC Source Voltage Regulator of Voltage Fed Inverter using a Photovoltatic Effect

  • Hwang, Lak-Hoon;Lee, Chun-Sang;Kim, Jong-Lae;Jang, Byong-Gon
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.547-553
    • /
    • 1998
  • In this paper, we composed of utility interactive pv generation system of voltage source inverter, and represented uninterrutible power supply (UPS) equipment maintaining constant voltage, using a pulse width modulation(PWM) voltage fed inverter, as power source disconnection, voltage variation and output current variation with load variation. This system is driven by being synchronized voltage fed inverter and AC source, and in the steady state of power source charge battery connected to dc side with solar cell using a photovoltaic (PV) that it was so called constant voltage charge. In addition, better output waveform was generated because of PWM method, and it was proved to test by experiment maintained constant output voltage regardless of AC source disconnection, load variation, and voltage variation of AC power source.

  • PDF

Analysis, Design and Implementation of an Interleaved Single-Stage AC/DC ZVS Converters

  • Lin, Bor-Ren;Huang, Shih-Chuan
    • Journal of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.258-267
    • /
    • 2012
  • An interleaved single-stage AC/DC converter with a boost converter and an asymmetrical half-bridge topology is presented to achieve power factor correction, zero voltage switching (ZVS) and load voltage regulation. Asymmetric pulse-width modulation (PWM) is adopted to achieve ZVS turn-on for all of the switches and to increase circuit efficiency. Two ZVS half-bridge converters with interleaved PWM are connected in parallel to reduce the ripple current at input and output sides, to control the output voltage at a desired value and to achieve load current sharing. A center-tapped rectifier is adopted at the secondary side of the transformers to achieve full-wave rectification. The boost converter is operated in discontinuous conduction mode (DCM) to automatically draw a sinusoidal line current from an AC source with a high power factor and a low current distortion. Finally, a 240W converter with the proposed topology has been implemented to verify the performance and feasibility of the proposed converter.

D-UPFC Application as the Series Power Device in the Massive Roof-top PVs and Domestic Loads

  • Lee, Kyungsoo
    • Current Photovoltaic Research
    • /
    • v.4 no.4
    • /
    • pp.131-139
    • /
    • 2016
  • This paper shows the series power device in the massive roof-top PVs and domestic loads. D-UPFC as the series power device controls the distribution voltage during voltage rise (or fall) condition. D-UPFC consists of the bi-directional ac-ac converter and the transformer. In order to verify the D-UPFC voltage control, the distribution model is used in the case study. D-UPFC enables the voltage control in the distribution voltage range. Dynamic voltage control from voltage rise and voltage fall conditions is performed. Scaled-down experimental test of the D-UPFC is verified the voltage control and it is well performed without high voltage spikes in the inductive load.

A Single-Phase PWM Converter with fast response (빠른 응답성을 갖는 단상 PWM Converter)

  • 배기훈;기상우;최종묵
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.322-327
    • /
    • 1999
  • In most railway vehicle applications, a single phase AC/DC converter is used greatly and is essential equipment for Korea High Speed Train. A diode bridge rectifier and a phase-controlled thyristor bridge rectifier generate harmonics in power system. Nowadays, power factor and harmonics become major issue in electrical equipment for railway vehicle. Many researchers have been trying to improve the power factor and ac-side harmonics. Therefore the PWM converter is used to operate at unity Power factor and to reduce ac-side current harmonics. This paper describes the circuit for AC/DC PWM converter of Korea High Speed Train and proposes control algorithm to realize the sinusolidal input current waveform and the effective unity power factor. The validity of the proposed control method is verified through the experimental result.

  • PDF