• Title/Summary/Keyword: AC Power

Search Result 3,405, Processing Time 0.024 seconds

A Novel Power Frequency Changer Based on Utility AC Connected Half-Bridge One Stage High Frequency AC Conversion Principle

  • Saha Bishwajit;Koh Kang-Hoon;Kwon Soon-Kurl;Lee Hyun-Woo;Nakaoka Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.203-205
    • /
    • 2006
  • This paper presents a novel soft-switching PWM utility frequency AC to high frequency AC power conversion circuit incorporating boost-half-bridge inverter topology, which is more suitable and acceptable for cost effective consumer induction heating applications. The operating principle and the operation modes are presented using the switching mode and the operating voltage and current waveforms. The performances of this high-frequency inverter using the latest IGBTs are illustrated, which includes high frequency power regulation and actual efficiency characteristics based on zero voltage soft switching (ZVS) operation ranges and the power dissipation as compared with those of the previously developed high-frequency inverter. In addition, a dual mode control scheme of this high frequency inverter based on asymmetrical pulse width modulation (PWM) and pulse density modulation (PDM) control scheme is discussed in this paper in order to extend the soft switching operation ranges and to improve the power conversion efficiency at the low power settings. The power converter practical effectiveness is substantially proved based on experimental results from practical design example.

  • PDF

Power control of PTC heating element using variable AC Cycles (AC Cycles 가변을 이용한 PTC 발열체의 전력제어)

  • Gong, Jae-Woong;Lee, Young-Joo;Kim, Doo-Young
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.4
    • /
    • pp.355-361
    • /
    • 2011
  • The power control of the existing heating element has been using the On-Off control, phase control, and PWM control. In case of controlling power PTC heating element developed recently with the existing method, the temperature is unable to be precisely controlled or the harmful electromagnetic wave to human body is generated. In this paper, We suggest the power control of PTC heating cable using variable AC Cycles. This regards the AC cycle of N as the unit of the power control. It determines On-Off for each cycle. It is the AC power control method in which it arranges the on-cycle in N cycles in the random and it supplies the current continuously. At this time. the minimal electric power amount becomes 1/N. The maximum current amount becomes 1 and sets up the number of on cycles according to the set value and can control the electric power with the step of N consistently. In the PTC heating system, we show that proposed power control method is superior in the EMI and temperature control property using MATLAB simulation, experiments and measurements.

The design of efficient Power system for AC PDP (AC PDP 에 효율적인 전원시스템의 설계)

  • Park H.W.;Ahn S.H.;Kang F.S.;Chung C.G.;Kim C.U.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.121-124
    • /
    • 2003
  • In this paper, a novel PFC AC / DC converter is presented to be appropriate for AC PDP's power driving system. The conventional PFC AC / DC converter has independent power stages and controllers for their switching respectively, which should have increased price, size on manufacturing and decreased its efficiency as well. So this advanced Single-Stage Power Factor Corrector is presented and verified through spice simulation.

  • PDF

A Study on the Analysis Model of AC/DC Switch-mode Converter (AC/DC 스위치모드 컨버터의 해석모델에 관한 연구)

  • 오인석;박한웅;박진규;성세진
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.1
    • /
    • pp.70-76
    • /
    • 1998
  • A switch-mode AC/DC converter with high input power factor and sinusoidal input current waveforms is analyzed and modelled for computer simulation. The developed mathematical model for this converter can be used to examine the transient and steady-state performance for selecting the proper ratings of filter, boost inductor and semiconductor devices or the effects of this converter under normal and fault operating conditions on the associated power systems. The proposed model and computer programs are confirmed by comparing with the experimental results.

AC Plasma Power Supply with Variable Voltage and Variable Frequency (가변전압 가변주파수(VVVF) 교류 플라즈마 전원장치)

  • Shin Wan-Ho;Yun Kee-Pok;Jeoung Hwan-Myoung;Choi Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1205-1207
    • /
    • 2004
  • AC plasma power supply is used to control a ozone generator and a air pollution gas. AC plasma power supply is composed of power semiconductor switch devices and control board adapted SHE(Selected Harmonic Elimination) PWM method. AC plasma power supply with sinusoidal VVVF(variable voltage and variable frequency) is realized. Its output voltage range is from 0 [V] to 20[kV] and output frequency range is from 8[kHz] to 20[kHz]. Using proposed system, AC high voltage and high frequency discharge is tested in the DBD(dieletric barrier discharge) reactor, and the space distribution of a its non-thermal plasma is observed. In spite of the increasement of voltage and frequency, the proposed system have a stable operation characteristics. It is verified by the experimental results.

  • PDF

Unity Power Factor Control for A Single Phase AC/DC PWM Converter (단상 AC/DC PWM 변환기의 단위 역률 제어)

  • Kang, Dong-Woo;Cha, Young-Kil;Lee, Deuk-Kee;Kim, Heung-Geun
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.373-377
    • /
    • 1996
  • Recently, active power factor control for AC/DC converter has been required to replace for a conventional diode rectifier. A voltage type AC/DC converter is widely used to obtain higher regulated DC voltage than input voltage with a unity power factor and a sinusoidal line current. This paper describes several active power factor control method for AC/DC converter. The analysis of several active power factor control is given. The simulations for hysteresis control, peak current control. constant frequency control and average current mode control are represented and compared.

  • PDF

Digital Control of an AC/DC Converter using the Power Balance Control Technique with Average Output Voltage Measurement

  • Wisutmetheekorn, Pisit;Chunkag, Viboon
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.88-97
    • /
    • 2012
  • This paper presents a method for the digital control of a high power factor AC/DC converter employing the power balance control technique to achieve a fast response of the output voltage control. To avoid the effects of an output voltage ripple in the voltage control loop, the average output voltage is sampled and used as a feedback signal for the output voltage controller. The proposed control technique was verified by simulations using MATLAB/Simulink and its implementation was realized by a dsPIC30F4011 digital signal processor to control a CUK topology AC/DC converter with a 48V output voltage and a 250 W output power. The experimental results agree with the simulation results. The proposed control technique achieves a fast transient response with a lower line current distortion than is achieved when using a conventional proportional-integral controller and the power balance control technique with the conventional sampling method.

Input Power Estimation Method of a Three-phase Inverter for High Efficiency Operation of an AC Motor (교류 전동기의 고효율 운전을 위한 3상 인버터의 입력전력 추정 기법)

  • Kim, Do-Hyun;Kim, Sang-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.6
    • /
    • pp.445-451
    • /
    • 2019
  • An input power estimation method of a three-phase inverter for the high-efficiency operation of AC motors is proposed. Measuring devices, such as DC link voltage and input current sensors, are required to obtain the input power of the inverter. In the proposed method, the input power of the inverter can be estimated without the input current sensor by using the phase current information of the AC motor and the switching pattern of the inverter. The proposed method is more robust to parameter error than conventional method. The validity of the input power estimation method is verified through experiments conducted on a 1 kW permanent-magnet synchronous motor drive system.

Power Factor with Single Power Stage AC/DC Converter Operated in Active-Clamp Mode (능동 클램프 모드로 동작하는 단일 전력 AC/DC 컨버터에 의한 역률개선)

  • Yoon, Shin-Yong;Baek, Hyun-Soo;Kim, Yong;Kim, Cherl-Jin;Eo, Chang-Jin
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.8
    • /
    • pp.392-401
    • /
    • 2001
  • This paper presents the single-stage high power factor AC to DC converter operated in active-clamp mode. The proposed converter is added active-clamping circuit to boost-flyback single-stage power factor corrected power supply. The active-clamping circuit limits voltage spikes, recycles the energy trapped in the leakage inductance, and provides a mechanism for achieving soft switching of the electronic switches to reduce the switching loss. The auxiliary switch of active-clamping circuit uses the same control and driver circuit as the main switch to reduce the additional cost and size. To verify the performance of the proposed converter, a 100W converter has been designed. The proposed converter gives good power factor correction, low line current harmonic distortions, and tight output voltage regulation, as used unity power factor.

  • PDF

The PSCAD/EMTDC Modelling of JeJu AC Power System

  • Shuai, Zang;Choi, Joon-Ho
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.252-254
    • /
    • 2008
  • In this paper, the PSCAD/EMTDC modeling of JeJu AC power system with wind farms will be discussed. And the modelling of the synchronous generator, exciter, governor will also be defined in the JeJu power system by using the PSCAD/EMTDC. At the same time the fault analysis and the power flow analysis in JeJu AC power system are presented to demonstrate the JeJu AC power system can perfectly simulate the real JeJu power system function. Through the simulation using PSCAD/EMTDC we have gained the same results compared with the results accomplished by the PSS/E. so the validity of the modelling for the JeJu power system by using PSCAD/EMTDC is confirmed.

  • PDF