• Title/Summary/Keyword: AC Impedence

Search Result 6, Processing Time 0.022 seconds

Determination of Low-temperature Electrochemical Properties of Selected Cation-exchange Membranes for Cathodic Protection Analysis

  • Ko, Moon-Young;Kwon, Byeong-Min;Hong, Byung-Pyo;Byun, Hong-Sik
    • Korean Membrane Journal
    • /
    • v.10 no.1
    • /
    • pp.8-12
    • /
    • 2008
  • The electrochemical properties of Nafion type membranes as a function of temperature to examine the key factors affecting the cathodic protection process at low temperatures was investigated in this study. Variable temperature experiments for AC impedance, DC resistance were conducted. The resistances of 3 Nafion membranes (N 324, N 450, N MAC) were measured in 30% KOH (aq) for a range of temperatures between $-30^{\circ}C$ and room temperature. Membrane resistance increases exponentially with decreasing temperature. This behaviour is most significant at operational temperatures below $0^{\circ}C$. These membranes are stable under the low temperature and caustic conditions of the heat exchange system, but they place a much higher restriction on the cathodic protection of the stainless heat exchange stack. N 450 has the lowest AC impedence and DC resistance at temperatures below $0^{\circ}C$ and consequently is most suitable membrane of the three, for low temperature applications.

Ion Conduction Properties of PVDF/PAN based Polymer Electrolyte for Lithium Polymer Battery (리튬 폴리머전지용 PVDF/PAN계 고분자 전해질의 이온 전도 특성)

  • 이재안;김종욱;구할본
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.4
    • /
    • pp.306-311
    • /
    • 2000
  • The purpose of this study is to research and develop solid polymer electrolyte(SPE) for Li polymer battery. The temperature dependence of conductivity impedance spectroscopy and electrochemical properties of PDF/PAN electrolytes as a function of a mixed ratio were reported for PVDF/PAN based polymer electrolyte films which were prepared by thermal gellification method of preweighed PVDF/PAN plasticizer and Li salt. The conductivity of PVDF/PAN electrolytes was 10$\^$-3/S/cm. 20PVDF5PEN LiCiO$\_$4//PC$\_$10//EC$\_$10/ electrolyte has the better conductivity compared to others. 20PVDF5PANLICIO$\_$4//PC$\_$10//EC$\_$10/ electroylte remains stable up to 5V vs. Li/Li$\^$+/. Steady state current method and ac impedance were used for the determination of transference numbers in PVDF/PAN electrolyte film. The transference number of 20PVDF5PANLiCO$\^$4//PC$\_$10//EC$\_$10/ electrolyte is 0.48.

  • PDF

Comparison of Riboflavin Status between Traditional Farming Women and Commercial Farming Women in Korea

  • Lim, Hwa-Jae;Yoon, Jin-Sook
    • Korean Journal of Community Nutrition
    • /
    • v.2 no.5
    • /
    • pp.701-710
    • /
    • 1997
  • this study was undertaken to compare the riboflavin status of rural women with different physical activity intensity and to determine factors influencing biochemical fiboflavin status. The study was carried out over three different farming seasons : planting (June), harvest(October) and interim(February) in two rural regions of Korea. One was a traditional farming region, the other a commercial farming region with heavier work intensity. Twenty women in the traditional region and eighteen women in the commercial region were involved. The intensity of physical activity was determined by a daily activity record. Body composition was assessed by bioelectrical impedence. Dietary riboflavin intake was measured by the food frequency method. Riboflavin biochemical status was assessed by erythrocyte glutathione reductase activity coefficient (EGR AC) and ruinary riboflavin excretion. The results from the EGR AC and urinary riboflavin excretion during the period showed the overall riboflavin status of the commercial farming women was significantly worse than that of the traditional farming women(EGR AC p<0.0001, urinary riboflavin excretion p<0.05). The traditional farming group had about 40% with risk of riboflavin deficiency, whereas the commercial farming group had about 70%. Overall mean nutrient intake was not significantly different between the two groups, however, overall mean percent lean body mass representing long term physical activity was significantly higher in the commercial farming group ( <0.005). It appears that the biochemical riboflavin status of traditional farming women was significantly influenced by riboflavin intake and crude nitrogen balance while the biochemical riboflavin status of the commercial farming women was significantly influenced by riboflavin intake and percent of lean body mass over the three seasons. (Korean J Community Nutrition 2(5) : 701∼710, 1997)

  • PDF

The Effects of TiO$_2$Addition on the PTC Properties of BaTiO$_3$ (BaTiO$_3$계의 PTC 특성에 미치는 TiO$_2$첨가량의 영향)

  • 김병수;박준식;박광범;손명성;김털수;이덕출
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.44-48
    • /
    • 1996
  • We have investigated the influence of Ti/Ba mole ratio in the characteristics of the modified BaTiO$_3$systems with Ca addition. The specimens were fabricated with variations in Ti/Ba mole ratio between 0.995 and 1.01, and sintered in the temperature range between 13$25^{\circ}C$ and 1375$^{\circ}C$. The room temperature resistivity, PTCR effect and ac complex impedence characteristics were studied. It shows that the room temperature resistivity was increased with the increasing Ti/Ba mole ratio and sintering temperature. It was suggested that this result was mainly attributed to its grain-boundary properties

  • PDF

Behavior of $Li^{+}$ in PAN/PVDF based Polymer Electrolyte for Lithium Polymer Battery (리튬 폴리머전지용 PAN/PVDF계 고분자 전해질의 리튬 이온 거동)

  • 이재안;김상기;김종욱;구할본;박계춘
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.540-543
    • /
    • 2000
  • The purpose of this study is to research and develop solid polymer electrolyte(SPE) for Li polymer battery. The temperature dependence of conductivity, impedance spectroscopy and electrochemical properties of PAN/PVDF electrolytes as a function of a mixed ratio were reported for PAN/PVDF based polymer electrolyte films, which were prepared by thermal gellification method of preweighed PAN/PVDF, plasticizer and Li salt. The conductivity of PAN/PVDF electrolytes was $10^{-3}$S/cm. $PAN_{10}$$PVDF_{10}$$LiClO_4$$PC_{5}$$EC_{5}$ electrolyte has the better conductivity compared to others. The interfacial resistance behavior between the lithium electrode and PAN/PVDF based polymer electrolyte has also been investigated and compare with that between the lithium electrode and the PAN/PVDF based polymer electrolyte.

  • PDF

Nickel Oxide Nano-Flake Films Synthesized by Chemical Bath Deposition for Electrochemical Capacitors (CBD(Chemical Bath Deposition) 법으로 제조된 전기화학식 캐패시터용 NiO 나노박편 필름)

  • Kim, Young-Ha;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.163.2-163.2
    • /
    • 2010
  • In this work, nano-flake shaped nickel oxide (NiO) films were synthesized by chemical bath deposition technique for electrochemical capacitors. The deposition was carried out for 1 and 2 h at room temperature using nickel foam as the substrate and the current collector. The structure and morphology of prepared NiO film were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). And, electrochemical properties were characterized by cyclic voltammetry, galvanostatic charge-discharge, and AC impedence measurement. It was found that the NiO film was constructed by many interconnected NiO nano-flakes which arranged vertically to the substrate, forming a net-like structure with large pores. The open macropores may facilitate the electrolyte penetration and ion migration, resulted in the utilization of nickel oxide due to the increased surface area for electrochemical reactions. Furthermore, it was found that the deposition onto nickel foam as substrate and curent collector led to decrease of the ion transfer resistance so that its specific capacitance of a NiO film had high value than NiO nano flake powder.

  • PDF