• 제목/요약/키워드: AC Corrosion

검색결과 113건 처리시간 0.024초

Corrosion Behavior of Ti-6Al-4V Alloy after Plasma Electrolytic Oxidation in Solutions Containing Ca, P and Zn

  • Hwang, In-Jo;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.120-120
    • /
    • 2016
  • Ti-6Al-4V alloy have been used for dental implant because of its excellent biocompatibility, corrosion resistance, and mechanical properties. However, the integration of such implant in bone was not in good condition to achieve improved osseointergraiton. For solving this problem, calcium phosphate (CaP) has been applied as coating materials on Ti alloy implants for hard tissue applications because its chemical similarity to the inorganic component of human bone, capability of conducting bone formation and strong affinity to the surrounding bone tissue. Various metallic elements, such as strontium (Sr), magnesium (Mg), zinc (Zn), sodium (Na), silicon (Si), silver (Ag), and yttrium (Y) are known to play an important role in the bone formation and also affect bone mineral characteristics, such as crystallinity, degradation behavior, and mechanical properties. Especially, Zn is essential for the growth of the human and Zn coating has a major impact on the improvement of corrosion resistance. Plasma electrolytic oxidation (PEO) is a promising technology to produce porous and firmly adherent inorganic Zn containing $TiO_2(Zn-TiO_2)$coatings on Ti surface, and the a mount of Zn introduced in to the coatings can be optimized by altering the electrolyte composition. In this study, corrosion behavior of Ti-6Al-4V alloy after plasma electrolytic oxidation in solutions containing Ca, P and Zn were studied by scanning electron microscopy (SEM), AC impedance, and potentiodynamic polarization test. A series of $Zn-TiO_2$ coatings are produced on Ti dental implant using PEO, with the substitution degree, respectively, at 0, 5, 10 and 20%. The potentiodynamic polarization and AC impedance tests for corrosion behaviors were carried out in 0.9% NaCl solution at similar body temperature using a potentiostat with a scan rate of 1.67mV/s and potential range from -1500mV to +2000mV. Also, AC impedance was performed at frequencies ranging from 10MHz to 100kHz for corrosion resistance.

  • PDF

Corrosion Characteristics of Reinforced Steel Bar Emedded in Multiple Mortar Specimen(W/C:0.5) Aged 5 Years in Seawater

  • Moon, Kyung-Man;Takeo, Oki;Won, Jong-Pil;Park, Dong-Hyun;Kim, Yun-Hae
    • International Journal of Ocean System Engineering
    • /
    • 제3권1호
    • /
    • pp.33-37
    • /
    • 2013
  • Reinforced concrete structures have been increasingly widely used in numerous industrial fields. These structures are often exposed to severely corrosive environments such as seawater, contaminated water, acid rain, and the seashore. Thus, the corrosion problems that occur with the steel bars embedded in concrete are very important from the safety and economic points of view. In this study, the effects of the cover thickness on the corrosion properties of reinforced steel bars embedded in multiple mortar test specimens immersed in seawater for 5 years were investigated using electrochemical methods such as the corrosion potentials, polarization curves, cyclic voltammograms, galvanostat, and potentiostat. The corrosion potentials shifted in the noble direction, and the value of the AC impedance also exhibited a higher value with increasing cover thickness. Furthermore, the polarization resistance increased with increasing cover thickness, which means that the oxide film that is deposited on the surface of a steel bar surrounded by alkali environment exhibits better corrosion resistance because the water, chloride ions and dissolved oxygen have difficulty penerating to the surface of the steel bar with increasing cover thickness. Consequently, it is considered that the corrosion resistance of reinforced steel can be improved by increasing the cover thickness. However, the corrosion resistance values of a steel bar estimated by measuring the corrosion potential, impedance and polarization resistance were not in good agreement with its corrosion resistance obtained by polarization curves.

방청도료의 부식특성과 염분농도의 상관관계에 관한 연구 (A Study on Relationship between Corrosion Characteristics and Salt Concentration of Anti-corrosive Paint)

  • 문경만;이명우;이명훈;김혜민;백태실
    • 한국표면공학회지
    • /
    • 제51권2호
    • /
    • pp.95-103
    • /
    • 2018
  • Recently, many types of constructional steels have been often exposed to under severe corrosive environments due to acid rain with increasing environmental contamination. In order to inhibit their corrosion in severe corrosive environments, a painting method has been widely applied to numerous constructional steels of land as well as marine. Therefore, development of paint having a good quality of corrosion resistance is considered to be very important. In this study, four types of anti-corrosive paints (AP: Phenol epoxy, AC: Ceramic epoxy, AT: Coal tar epoxy, AH: High solid epoxy) were coated to the specimens, and then, were immerged in various salt solutions (0.1, 0.3, 3, 6, 9 and 15% NaCl solutions) for 11 days. And, the corrosion resistance of these samples by effect of osmotic pressure with salt concentration was investigated with electrochemical methods such as measurement of corrosion potential, impedance and corrosion current density. The corrosion current densities of all samples (AC, AT and AH) submerged in 3% NaCl solution exhibited the smallest values compared to other salt solutions. However, in the case of lower values of salt solutions than 3% NaCl solution, the corrosion current density increased again because it makes easier for water, dissolved oxygen and chloride ion etc. to invade toward inner side of coating film due to increasing of the osmotic pressure than 3% NaCl solution, but in the case of higher values of salt solutions than 3% NaCl solution, the coating film is easily deteriorated due to high concentration of chloride ion rather than the osmotic pressure, which resulted in increasing the corrosion current density. In particular, the AC sample indicated the best corrosion resistance in 6% NaCl solution compared to other samples. Consequently, it is considered that the corrosion mechanism of the coated steel plate is completely different from bare steel plate, and the corrosion resistance of coating film by osmotic pressure and chloride ion depend on various types of epoxy of paint in NaCl solution.

Corrosion Monitoring for Protected Systems using Thin-Film Electrical Resistance (TFER) Sensor

  • Lee, Seong-Min;Li, SeonYeob;Jung, Sung-Won;Kim, YoungGeun;Song, HongSeok;Won, Deok-Soo
    • Corrosion Science and Technology
    • /
    • 제5권3호
    • /
    • pp.112-116
    • /
    • 2006
  • This study has been conducted to monitor the corrosion rate of cathodically protected structure and corrosion inhibited system using multi-line thin-film electrical resistance (TFER) sensor in various environments. The field test data of TFER sensor for the corrosion monitoring of cathodically protected underground pipeline in soil environments and of corrosion inhibited gas heaters were also presented. The sensor was found to be a powerful method to commit the sensitive pick-up of small corrosion rate which can be observed in the cathodically protected and corrosion inhibited systems.

염분농도에 따른 콘크리트 모사 세공용액에서의 철근 부식특성 (Corrosion of Reinforcing Steel in Simulated Pore Solution with Chloride Ion)

  • 남상철;조원일;조병원;윤경석;전해수
    • 공업화학
    • /
    • 제9권5호
    • /
    • pp.667-673
    • /
    • 1998
  • 염분이 함유된 콘크리트 모사 세공용액 중에서의 철근 부식반응을 Tafel 분극법과 교류 임피던스법에 의해 비교 고찰하였으며, 철근 표면의 거칠기와 산화피막층에 의한 부식거동을 연구하였다. 전기화학적 교류 임피던스법에 의한 철근부식의 진단은 매우 유용하며, 제안된 모델과 실험결과가 잘 일치하였다. 염분농도가 증가할수록 부식전위는 cathodic-방향으로 이동하여 부식확률이 증가하였으며, 부식전류도 동일한 양상을 보였다. 철근 표면의 산화피막은 주사전자현미경과 AES (Auger electron spectroscopy)로 분석하였다. Torch로 15초간 열처리하여 형성된 철근표면의 산화피막은 오히려 철근부식을 촉진하였으며, 철근 표면의 거칠기가 증가할수록 부식속도는 증가하였다. 또한, 초기 콘크리트 모사세공 용액의 온도 증가는 철근 부식속도의 증가를 가져왔다.

  • PDF

EFFECT OF LOAD AND ANODE/CATHODE AREA RATIO ON WEAR OF Zr-ALLOY IN $Na_2SO_4$ SOLUTION

  • Iwabuchi, A.;Hosoya, K;Abe, K.;Shimizu, T.;Kim, S.S.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.205-206
    • /
    • 2002
  • In this paper we examined the contribution of mechanical and electrochemical factors in corrosive wear for Zr-alloy against $Al_2O_3$ ball in $Na_2SO_4$ solution. Normal load and the area of metallic specimen was varied to change the corrosion behavior. At the commence of sliding, the potential drop took place, which increased with load due to the great exposure of fresh surface. Wear volume was linearly proportional to load. The corrosion factor was about 15%. By increasing the Aa/Ac ratio, corrosion factor to total wear decreases and saturates above Aa/Ac=0.15.

  • PDF

Validation of Some Protection Guidelines for Neighboring Pipelines against Fault Currents from Power Transmission Tower

  • Lee, Seong-Min;Song, Hong-Seok;Kim, Young Geun
    • Corrosion Science and Technology
    • /
    • 제6권2호
    • /
    • pp.77-81
    • /
    • 2007
  • Fault current can be discharged from power transmission tower due to lightning or inadvertent contact of crane, etc. Pipelines in proximity to either the source of the ground fault or the substation grounding grid may provide convenient conductive path for the fault current to travel. Inappropriate measures to the neighboring pipelines against the fault current may cause severe damages to the pipes such as coating breakdown, arc burn, puncture, loss in wall thickness, or brittle heat-affected zone. Like inductive and conductive AC coupling, steadily induced fault current right after the coating breakdown can lead to corrosion of the pipeline. In this work, some protection guidelines against fault currents used in the field have been validated through the simulation and analytical method.

$Ca(OH)_2$ 수용액에서 Zn과 Zn-Fe 합금의 부식 (Corrosion of Zn and Zn-Fe alloys in $Ca(OH)_2$ Solutions)

  • 이수선;강성군
    • 한국표면공학회지
    • /
    • 제19권4호
    • /
    • pp.133-139
    • /
    • 1986
  • The effects of alternating voltage, $Cl^-$ ion and pH on the corrosion of Zn and Zn-Fe alloys have been investigated by using electrochemical techniques in $Ca(OH)_2$ solutions. The passive film $Zn(OH)_2$ was initially formed on the Zn surface and gradually transformed to $Ca(Zn(OH)_3)_2{\cdot}2H_2O$, which was identified with the X-ray diffraction method, SEM micrograph and EPMA. The passivity current increased with increasing alternating voltage and decrease AC frequency. ${\xi}$ phase in Zn-Fe alloys reduced the effects of AC. The effect of $Cl^-$ ion on the passivity current of Zn was similar to the AC effect, resulting in pits on Zn. It was also found that the passive region of Zn decreased rapidly below pH 10.3 of the solution.

  • PDF

Electrochemical Analysis on Flow-Accelerated Corrosion Behavior of SA106 Gr.C Steel in Alkaline Solution

  • Kim, Jun Hwan;Kim, In Sup;Chung, Han Sub
    • Corrosion Science and Technology
    • /
    • 제2권1호
    • /
    • pp.41-46
    • /
    • 2003
  • Flow-Accelerated Corrosion behavior concerning both activation and mass transfer process of SA106 Gr.C steel was studied using rotating cylinder electrode in room temperature alkaline solution by DC and AC electrochemical techniques. Passive film was tanned from pH 9.8 by step oxidation of ferrous product into hydroxyl compound. Corrosion potential shifted slightly upward with rotating velocity through the diffusion of cathodic species. Corrosion current density increased with rotating velocity in pH 6.98, while it soon saturated from 1000 rpm at above pH 9.8. On the other hand the limiting current increased with rotating speed regardless of pH values. It seems that activation process, which represents formation of passive film on the bare metal surface, controls the entire corrosion kinetics

Corrosion Resistance Properties of Rice Husk Ash Blended Concrete

  • Ganesan, K.;Rajagopal, K.;Thangavel, K.
    • Corrosion Science and Technology
    • /
    • 제6권1호
    • /
    • pp.12-17
    • /
    • 2007
  • Portland cement incorporating supplementary cementing material develops excellent mechanical properties and long term durability characteristics. India is a leading rice producing country and rice husk is considered as waste in the rice milling industries. In this present work, the rice husk ash (RHA) was added to concrete as cement replacement from 0 to 30%. Corrosion performance of reinforcing steel embedded in RHA blended concretes was studied using linear polarization, AC impedance and gravimetric methods. The corrosion rate of steel bars embedded in RHA concretes were compared with control concrete. The results clearly indicate that the corrosion rate of reinforcing steel embedded in concrete is significantly reduced with the incorporation of RHA. A good correlation among gravimetric method and electrochemical methods was observed. Electrochemical impedance study showed 98 percentage reduction in corrosion rate to the RHA blended concrete with 15% replacement than control concrete.