• Title/Summary/Keyword: AADT 추정

Search Result 27, Processing Time 0.019 seconds

Estimation of AADT Using Multiple Linear Regression in Isolated Area (다중선형 회귀분석을 이용한 고립지역에서의 AADT 추정방안 연구)

  • Kim, Tae-woon;Oh, Ju-sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.887-896
    • /
    • 2015
  • This study estimates future AADT using historical AADT and socio-economic factors in isolated area. Multiple linear regression method by socio-economic factors are lower MAPE and higher R-square than using historical AADT. Analysis of socio-economic factors influence AADT in isolated typical areas, varied socio-economic factors influence on AADT. In isolated coastal areas, oil price influence on AADT. AADT forecasting model in isolated area is excellent when analysising $R^2$ and MAPE. It is assume that estimation of AADT in isolated area using multiple linear regression is accurate because of a little passed traffic volume and traffic volume fluctuation.

A Study on Performance Evaluation of Various Kriging Models for Estimating AADT (연평균 일교통량 산정을 위한 다양한 크리깅 방법의 성능 평가에 대한 연구)

  • Ha, Jung Ah;Oh, Sei-Chang;Heo, Tae-Young
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.4
    • /
    • pp.380-388
    • /
    • 2014
  • Annual average daily traffic(AADT) serves as important basic data in the transportation sector. AADT is used as design traffic which is the basic traffic volume in transportation planning. Despite of its importance, at most locations, AADT is estimated using short term traffic counts. An accurate AADT is calculated through permanent traffic counts at limited locations. This study dealt with estimating AADT using various models considering both the spatial correlation and time series data. Kriging models which are commonly used spatial statistics methods were applied and compared with each model. Additionally the External Universal kriging model, which includes explanatory variables, was used to assure accuracy of AADT estimation. For evaluation of various kriging methods, AADT estimation error, proposed using national highway permanent traffic count data, was analyzed and their performances were compared. The result shows the accuracy enhancement of the AADT estimation.

The AADT estimation through time series analysis using irregular factor decomposition method (불규칙변동 분해 시계열분석 기법을 사용한 AADT 추정)

  • 이승재;백남철;권희정;최대순;도명식
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.6
    • /
    • pp.65-73
    • /
    • 2001
  • Until recently, we use only weekly and monthly adjustment factors in order to estimate the AADT. By the way. we can suppose that the traffic is time series data related to flow of time. So we tried to analyse traffic patterns using time series analysis and apply them to estimate the AADT. We could divide traffic patterns into trend, cyclic variation, seasonal variation and irregular variation like as time series data. Also, in order to reduce random error components, we have looked for the weather conditions as an influential factor. There are many weather conditions such as rainfalls, but, temperatures, and sunshine hours among others but we selected rainfalls and lowest temperatures. And then, we have estimated the AADT using time series factors. To compare the results of, we have applied both irregular variation joined to weather factors and that not joined to. RMSE and U-test were opted at methods to appreciate results of AADT estimation.

  • PDF

Annual Average Daily Traffic Estimation using Co-kriging (공동크리깅 모형을 활용한 일반국도 연평균 일교통량 추정)

  • Ha, Jung-Ah;Heo, Tae-Young;Oh, Sei-Chang;Lim, Sung-Han
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.1
    • /
    • pp.1-14
    • /
    • 2013
  • Annual average daily traffic (AADT) serves the important basic data in transportation sector. Despite of its importance, AADT is estimated through permanent traffic counts (PTC) at limited locations because of constraints in budget and so on. At most of locations, AADT is estimated using short-term traffic counts (STC). Though many studies have been carried out at home and abroad in an effort to enhance the accuracy of AADT estimate, the method to simplify average STC data has been adopted because of application difficulty. A typical model for estimating AADT is an adjustment factor application model which applies the monthly or weekly adjustment factors at PTC points (or group) with similar traffic pattern. But this model has the limit in determining the PTC points (or group) with similar traffic pattern with STC. Because STC represents usually 24-hour or 48-hour data, it's difficult to forecast a 365-day traffic variation. In order to improve the accuracy of traffic volume prediction, this study used the geostatistical approach called co-kriging and according to their reports. To compare results, using 3 methods : using adjustment factor in same section(method 1), using grouping method to apply adjustment factor(method 2), cokriging model using previous year's traffic data which is in a high spatial correlation with traffic volume data as a secondary variable. This study deals with estimating AADT considering time and space so AADT estimation is more reliable comparing other research.

A study on the estimation of AADT by short-term traffic volume survey (단기조사 교통량을 이용한 AADT 추정연구)

  • 이승재;백남철;권희정
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.6
    • /
    • pp.59-68
    • /
    • 2002
  • AADT(Annual Average Daily Traffic) can be obtained by using short-term counted traffic data rather than using traffic data collected for 365 days. The process is a very important in estimating AADT using short-term traffic count data. Therefore, There have been many studies about estimating AADT. In this Paper, we tried to improve the process of the AADT estimation based on the former AADT estimation researches. Firstly, we found the factor showing differences among groups. To do so, we examined hourly variables(divided to total hours, weekday hours. Saturday hours, Sunday hours, weekday and Sunday hours, and weekday and Saturday hours) every time changing the number of groups. After all, we selected the hourly variables of Sunday and weekday as the factor showing differences among groups. Secondly, we classified 200 locations into 10 groups through cluster analysis using only monthly variables. The nile of deciding the number of groups is maximizing deviation among hourly variables of each group. Thirdly, we classified 200 locations which had been used in the second step into the 10 groups by applying statistical techniques such as Discriminant analysis and Neural network. This step is for testing the rate of distinguish between the right group including each location and a wrong one. In conclusion, the result of this study's method was closer to real AADT value than that of the former method. and this study significantly contributes to improve the method of AADT estimation.

Development of Nth Highest Hourly Traffic Volume Forecasting Models (고속국도에서의 연평균일교통량에 따른 N번째 고순위 시간교통량 추정모형 개발에 관한 연구)

  • Oh, Ju-Sam
    • International Journal of Highway Engineering
    • /
    • v.9 no.3
    • /
    • pp.13-20
    • /
    • 2007
  • For calculating the number of lane, it is essential to gain the 30th or 100th highest design hourly volume. The design hourly volume obtained from AADT multiplied by design hour factor. In this paper, we developed the regression models fur estimating the 30th highest hour volume and 100th highest hour volume as defined by AADT 50,000 criterion based on the data obtained the 34 monitoring sites in highway. By comparing the performance of the proposed models and conventional models using MAPE, the proposed model for 30th highest design hourly volume reduced the estimator error of 11.83% than that of conventional methods for less than AADT 50,000 and decreased estimation error of 22.17% than that of conventional method for more than AADT 50,000. Moreover, the proposed model for 100th highest design hourly volume reduced the estimator error of 8.16% than that of conventional methods for less than AADT 50,000 and decreased estimation error of 15.25% than that of conventional method for more than AADT 50,000.

  • PDF

Estimating Annual Average Daily Traffic Using Hourly Traffic Pattern and Grouping in National Highway (일반국도 그룹핑과 시간 교통량 추이를 이용한 연평균 일교통량 추정)

  • Ha, Jung-Ah;Oh, Sei-Chang
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.2
    • /
    • pp.10-20
    • /
    • 2012
  • This study shows how to estimate AADT(Annual Average Daily Traffic) on temporary count data using new grouping method. This study deals with clustering permanent traffic counts using monthly adjustment factor, daily adjustment factor and a percentage of hourly volume. This study uses a percentage of hourly volume comparing with other studies. Cluster analysis is used and 5 groups is suitable. First, make average of monthly adjustment factor, average of daily adjustment factor, a percentage of hourly volume for each group. Next estimate AADT using 24 hour volume(not holiday) and two adjustment factors. Goodness of fit test is used to find what groups are applicable. MAPE(Mean Absolute Percentage Error) is 8.7% in this method. It is under 1.5% comparing with other method(using adjustment factors in same section). This method is better than other studies because it can apply all temporary counts data.

Directional Design Hourly Volume Estimation Model for National Highways (일반국도의 중방향 설계시간 교통량 추정 모형)

  • Lim, Sung-Han;Ryu, Seung-Ki;Byun, Sang-Cheol;Moon, Hak-Yong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.3
    • /
    • pp.13-22
    • /
    • 2012
  • Estimating directional design hourly volume (DDHV) is an important aspect of traffic or road engineering practice. DDHV on highway without permanent traffic counters (PTCs) is usually determined by the annual average daily traffic (AADT) being multiplied by the ratio of DHV to AADT (K factor) and the directional split ratio (D factor) recommended by Korea highway capacity manual (KHCM). However, about the validity of this method has not been clearly proven. The main intent of this study is to develop more accurate and efficient DDHV estimation models for national highway in Korea. DDHV characteristics are investigated using the data from permanent traffic counters (PTCs) on national highways in Korea. A linear relationship between DDHV and AADT was identified. So DDHV estimation models using AADT were developed. The results show that the proposed models outperform the KHCM method with the mean absolute percentage errors (MAPE).

Estimation of Total Travel Time for a Year on National Highway Link with AADT (연평균 일일교통량을 이용한 일반국도구간 연간 총통행시간 추정 방법 개발)

  • Kim, Jeong Hyun;Suh, Sunduck;Kim, Taehee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1D
    • /
    • pp.11-16
    • /
    • 2009
  • The estimation of total travel time on highway link for a day or year is the most important process for the feasibility analysis of highway or railway. Most of current guidelines for feasibility studies have been based on the time-traffic volume relationship from the BPR, and the traffic volumes have been determined by the application of the design hour factor to the annual average daily traffic volume. Both of the BPR function and the application of the design hour volume may result in the over-estimation of travel time due to the fact that the traffic volume on the large portion of highway links in Korea are close to the capacities. This study proposed a new way which is based on the distribution of hourly volumes for a year. It could be closer to the real situation, and provide more reasonable estimation. This methodology was validated for the national highways, but may be applicable for any type of highway with the AADT.

Calculating Social Benefit in Travel Time Considering Seasonal and Daily Variation in Traffic Pattern (계절별 요일별 교통패턴 변동을 반영한 연통행시간 편익산출)

  • Han, Khun-Soo;Baek, Seung-Kirl;Kim, Ik-Ki
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.7 s.78
    • /
    • pp.17-23
    • /
    • 2004
  • 교통정책을 평가하기 위해 기본적으로 요구되는 Data 중 가장 근본이 되는 것이 OD이다. 기존의 교통정책을 평가함에 있어서 일반적으로 사용되고 있는 OD는 AADT(Annual Average Daily Traffic) OD이다. 계절별 평일/주말 교통량의 분산이 매우 크다는 것은 기존 조사나 연구로 익히 알려진 사실이며, 또한 사회 경제적인 여건의 변화 및 주 5일제 근무제의 시행 등으로 여가통행의 비중이 높아짐에 따라 평일과 주말의 교통량의 분산은 더욱 커질 것으로 예상된다. 따라서 교통정책을 평가하는 방법도 AADT OD의 일률적인 적용이 아닌 교통량의 계절별 평일/주말의 분산을 적용시킨 OD를 가지고 교통정책을 평가하는 방법이 교통정책을 결정함에 있어 오류를 범할 가능성을 적게 될 것으로 예상된다. 기존 연구에서는 이러한 교통량의 분산의 보정을 지점교통량에 한정하여 보정하고 있어 실질적인 네트워크 분석에 적용하기에는 무리가 있다. 이에 본 연구에서는 관측된 TCS Data를 이용하여 계절별 평일/주말의 OD 교통 패턴을 분석하여 계절별 평일/주말의 OD 교통패턴을 반영할 수 있는 보정계수를 산출하고 산출된 보정계수에 따라 AADT OD를 보정하여 네트워크 분석의 기초 자료를 구축하였다. 수정된 OD 교통량의 검증을 위하여 기존의 AADT OD의 인구당 통행발생비율과 계절별 평일/주말 OD의 통행발생량을 비교하였다. 그 결과 소수점 두 자리수에서 오차가 발생하여 비교적 합리적인 OD가 추정되었다. 또한 기존의 AADT OD를 이용하여 정책 결정을 할 때의 오류 가능성을 보이기 위하여 각 계절별 평일/주말 OD 교통량과 기존의 AADT OD를 입력 자료로 각각의 네트워크 분석 후 총통행시간의 차이를 분석하였다. 그 결과 정책 결정에 영향을 미칠 수 있을 정도의 차이가 있는 것으로 분석되었다.