DOI QR코드

DOI QR Code

Estimation of AADT Using Multiple Linear Regression in Isolated Area

다중선형 회귀분석을 이용한 고립지역에서의 AADT 추정방안 연구

  • Kim, Tae-woon (Korea Institute of Civil Engineering and Building Technology) ;
  • Oh, Ju-sam (Korea Institute of Civil Engineering and Building Technology)
  • 김태운 (한국건설기술연구원 ICT 융합연구소) ;
  • 오주삼 (한국건설기술연구원 ICT 융합연구소)
  • Received : 2014.09.17
  • Accepted : 2015.05.19
  • Published : 2015.08.01

Abstract

This study estimates future AADT using historical AADT and socio-economic factors in isolated area. Multiple linear regression method by socio-economic factors are lower MAPE and higher R-square than using historical AADT. Analysis of socio-economic factors influence AADT in isolated typical areas, varied socio-economic factors influence on AADT. In isolated coastal areas, oil price influence on AADT. AADT forecasting model in isolated area is excellent when analysising $R^2$ and MAPE. It is assume that estimation of AADT in isolated area using multiple linear regression is accurate because of a little passed traffic volume and traffic volume fluctuation.

본 연구에서는 고립지역의 과거 AADT 자료와 사회 경제지표를 활용하여 장래 AADT를 추정하였다. 과거 교통량 추이 활용 시와 사회 경제지표 활용 시 장래 AADT를 추정했으며, 사회 경제지표를 활용하여 다중회귀 분석방식을 통한 장래 AADT 추정 시 높은 설명력과 낮은 오차율을 보였다. 지리적 특성별 AADT에 미치는 사회 경제지표 분석 결과 고립일반지역은 다양한 사회 경제지표가 AADT에 영향을 미쳤으며, 고립해안지역은 유류가격과 연관성을 보이는 것으로 나타났다. 고립지역의 장래 AADT 추정 모형은 $R^2$, MAPE 분석 시 우수한 것으로 나타났다. 이는 고립지역에서는 통과 교통량이 적고 교통량 변동이 적기 때문에 사회 경제지표를 활용한 장래 AADT 추정방식이 정확하다고 볼 수 있다.

Keywords

References

  1. Box, G. E. P. and Tiao, G. C. (1975). "Intervention analysis with applications to economic and environmental problems." Journal of American Statistical Association, No. 70, pp. 70-79.
  2. Brian, E. S. and Susan, M. (2012). Traffic Forecasting Guidelines, Nevada Department of Transportation, Nevada.
  3. Cho, S. S. and Sohn, Y. S. (2009). Time series analysis by SAS/ETS, Yulgobooks.
  4. Chu, W. (2010). Determination of the Amount of Historical Traffic Volume Data to be Used to Forecast Future Volumes, Minnesota Department of Transportation, Minnesota.
  5. Fang, Z. and Soon, C. (2001). "Estimation of annual average daily traffic in a florida county using GIS and regression." Transportation Research Board, No. 3440, pp. 1-17.
  6. Horowitz, A. and Farmer, D. (1999). "Statewide travel forecasts: A Critical Review." Transportation Research Record, No. 1685, pp. 13-20.
  7. Kim, S. H. (2013). Research on passenger vehicle mileage estimation model, Master's degree Engineering, Yonsei University.
  8. Korea Development Institute (2008). A study on standard guidelines for pre-feasibility study on road and railway projects [5th addition] (in Korean).
  9. Memmott, J. (1983). "Factors that affect traffic growth rates and projection of traffic volumes for use in highway economic models." Transportation Research Record, No. 912, pp. 11-15.
  10. Michael, D. (2004). The effective of errors in annual average daily traffic forecasting: Study of Highways in Rural Idaho, KLK253 N04-12, National Institute for Advanced Transportation Technology University of Idaho, Idaho.
  11. Ministry of Land, Infrastructure and Transport (2013). Statistical yearbook of traffic volume, 11-1613000-000003-10 (in Korean).
  12. Park, J. H. and Kim, S. G. (2012). "Development of accident forecasting models in freeway tunnels using multiple linear regression analysis." Journal of the Korea Institute ITS, Vol. 11, No. 6, pp. 145-154.
  13. Shen, L. D., Zhao, F. and Ospina, D. (1999). Estimation of annual average daily traffic for off-system roads in Florida, FL 33199, Florida Department of Transportation, Tallahassee.
  14. Tomas, S. (2006). "Annual average daily traffic forecasting using different techniques." Transport and Road Research Institute, Vol. 21, No. 1, pp. 38-43.