• 제목/요약/키워드: A5083 합금

검색결과 63건 처리시간 0.024초

2단계 비대칭 압연과 열처리한 AA5083 Al 합금판재의 집합조직과 소성변형비 변화 (Texture and Plastic Strain Ratio Changes during a 2 Step Asymmetric Rolling and Annealing of AA5083 Al Alloy Sheet)

  • 정해봉;이진혁;김광희;남수권;김인수
    • 소성∙가공
    • /
    • 제23권2호
    • /
    • pp.82-87
    • /
    • 2014
  • The plastic strain ratio is one of the factors that affect the deep drawability of Al alloy sheet. The deep drawability of Al alloy sheet is limited because of its low plastic strain ratio. Therefore an increase in the plastic strain ratio to improve the deep drawability of Al alloy sheet is needed. The current study investigated the increase of the plastic strain ratio and the change in texture of AA5083 Al alloy sheet after a 2 step asymmetric rolling with heat treatments. The average plastic strain ratio of initial AA5083 Al alloy sheets was 0.83. After the first asymmetric rolling step of 88% deformation and subsequent heat treatment at $320^{\circ}C$ for 10 minutes the value was still 0.83. After the second asymmetric rolling of 14% reduction and subsequent heat treatment at $330^{\circ}C$ for 10 minutes the plastic strain ratio rose to 1.01. The average plastic strain ratio after the 2 step asymmetric rolling and heat treatment is 1.2 times higher than that of initial AA5083 Al alloy sheet. This result is related to the development of ND/<111> texture component after the second asymmetric rolling and heat treatment.

5000계열 Al 합금의 캐비테이션 특성에 관한 워터 캐비테이션 피닝의 영향 (Effects of Water Cavitation Peening on Cavitation Characteristics of 5000 Series Al Alloys)

  • 김성종;현광용
    • 해양환경안전학회지
    • /
    • 제18권5호
    • /
    • pp.481-487
    • /
    • 2012
  • 최근 FRP 선박의 폐선 처리문제, 환경 규제의 강화, 자원 재활용 등의 관점에서 소형 알루미늄 합금 선박의 건조가 증가하는 추세이다. 그러나 알루미늄은 가볍기 때문에 해양에서 고속으로 운행 가능한 알루미늄 선박은 캐비테이션이 발생되어 기포붕괴에 따른 큰 충격압력에 의해 캐비테이션 침식이 일어남으로서 재료의 수명에 있어 문제점을 드러내고 있다. 따라서 본 연구에는 캐비테이션에 의한 손상을 방지하여 내구 수명을 연장시키기 위한 방법으로 워터 캐비테이션 피닝 기술을 선박용 알루미늄 합금에 적용하였다. 이를 위하여 워터 캐비테이션 피닝을 실시하여 내캐비테이션 특성이 가장 우수한 적용 시간을 규명하였다. 선박용 알루미늄 합금 5456-H116, 5083-H321 그리고 5052-O는 워터캐비테이션 피닝을 실시함으로써 내캐비테이션 특성이 워터 캐비테이션 피닝을 하지 않은 시편보다 무게감소량이 각각 42.11 %, 50.0 % 그리고 25.7 % 개선되었다.

알루미늄합금 진공용기의 기체방출 특성 (Outgassing characteristics of an aluminum-alloy vacuum chamber)

  • 박종도;하태균;문상운;배인호;정석민
    • 한국진공학회지
    • /
    • 제10권2호
    • /
    • pp.164-172
    • /
    • 2001
  • 기계가공으로 제작되고 알칼리 화학세정을 거친 알루미늄합금(A5083) 진공용기에 대한 기체방출 특성을 조사하였다. 상온배기를 시작한 후 가열탈기체 처리를 하기 전 까지 배기곡선은 ~$t^{-1.15}$ 모양을 따랐다. 이 알루미늄 진공용기에 대한 배기곡선을 비교적 간단한 모델들을 사용하여 용기의 내표면에 흡착되어 있는 물의 1차 방출로 분석하였다. ~$10^{-5}-10^{-8}$Torr 압력구간에서 물분자는 ~17 - 22 kcal/mol사이의 탈리에너지 값을 가지는 몇 개의 흡착석에서 방출됨을 알 수 있었다. 한편 $100^{\circ}C$, 24 시간 가열 탈기체 처리후 알루미늄용기에 대한 기체방출률은 상온에서 ~1$\times$$10^{-13}$ Torr$\ell$/s $\textrm{cm}^2$로 측정되었다.

  • PDF

A5083-H116 알루미늄 합금재 용접부의 부하응력에 따른 부식특성의 영향 (Effect of Corrosion Characteristics in Relation to Loaded Stress in the Welded Zone of A5083-H116 Aluminum Alloy)

  • 조상근;공유식;김영대
    • 동력기계공학회지
    • /
    • 제8권3호
    • /
    • pp.44-51
    • /
    • 2004
  • Effect of corrosion characteristics in relation to loaded stress in the welded zone of A5083-H116 aluminum alloy, in the seawater was studied. The corrosion experiment was performed for 120 hours on the specimens in the natural seawater tank with four steps of the loaded stress. The corrosion crack, corrosion rate, electrode potential, current, and corrosion pattern, etc. were examined for the specimens with the elapse of the immersion time. The main result derived from this study is the crack growth length is increased with the increasing loaded stress. The electrode potential and the corrosion current are decreased rapidly in the early stage of the corrosion, and then decreased gradually and stabilized eventually with the elapse of the immersion time. The test condition of the longer crack growth tends to show the higher corrosion rate. Corrosion pattern of the welded zone indicates that the depth and width of the pitting become increasing with the increasing loaded stress.

  • PDF

해수 환경에서 Al5083-H321 알루미늄 합금의 침식부식 손상에 미치는 유속의 영향과 손상 메카니즘 (Effect of Flow Rate on Erosion Corrosion Damage and Damage Mechanism of Al5083-H321 Aluminum Alloy in Seawater Environment)

  • 김영복;김성종
    • Corrosion Science and Technology
    • /
    • 제19권3호
    • /
    • pp.115-121
    • /
    • 2020
  • In this study, erosion tests and erosion-corrosion tests of Al5083-H321 aluminum alloy were conducted at various flow rates in seawater. The erosion tests were conducted at a flow rate of 0 to 20 m/s, and erosion-corrosion tests were performed by potentiodynamic polarization method at the same flow rate. Characteristic evaluation after the erosion test was conducted by surface analysis. Characteristic evaluation after the erosion-corrosion test was performed by Tafel extrapolation and surface analysis. The results of the surface analysis after the erosion test showed that surface damage tended to increase as the flow rate increased. In particular, intermetallic particles were separated due to the breakdown of the oxide film at 10 m/s or more. In the erosion-corrosion test, the corrosion current density increased as the flow rate increased. Additionally, the surface analysis showed that surface damage occurred in a vortex shape and the width of the surface damage tended to increase as the flow rate increased. Moreover, damage at 0 m/s, proceeded in a depth direction due to the growth of pitting corrosion, and the damaged area tended to increase due to acceleration of the intermetallic particle loss by the fluid impact.

ECAE 전단 가공된 5083 알루미늄 합금의 고변형률 변형거동 (High Strain Rate Deformation Behavior of 5083 Aluminum Alloy Prepared via Equal Channel Angular Extrusion)

  • 김양곤;고영건;신동혁;이성학
    • 대한금속재료학회지
    • /
    • 제47권7호
    • /
    • pp.397-405
    • /
    • 2009
  • The high strain rate deformation behavior of ultra-fine grained 5083 aluminum alloys prepared via equal channel angular (ECA) extrusion was investigated in this study. The microstructure of ECA extruded specimens consisted of ultra-fine grains, and contained a considerable amount of second phase particles, which were fragmented and distributed homogeneously in the matrix. According to the dynamic torsion test results, the maximum shear stress and fracture shear strain of the route A (no rotation) specimen were lower than those of route C ($180^{\circ}$ rotation) specimen since that adiabatic shear bands of $100{\mu}m$ in width were formed in the route A specimen. The formation of adiabatic shear bands was addressed by concepts of critical shear strain, deformation energy required for void initiation, and microstructural homogeneity associated with ECA operations.

PTA법에 의한 Al 합금표면의 Si 합금층 형성과 내마모성 개선 (Improvement of Wear Resistance and Formation of Si Alloyed Layer on Aluminum Alloy by PTA Process)

  • 박성두;이영호
    • Journal of Welding and Joining
    • /
    • 제15권5호
    • /
    • pp.134-143
    • /
    • 1997
  • The formation of thick alloyed layer with high Si content have been investigated on the surface of Al alloy (A5083) plate by PTA process with Si powder. Hardening characteristics and wear resistance of alloyed layer was examined in relation to the microstructure of alloyed layer. Thick hardened layer in mm-order thickness on the surface of A5083 plate can be formed by PTA process with wide range of process condition by using Si powder as alloying element because of eutectic reaction of Al-Si binary alloy. High temperature and rapid solidification rate of molten pool, which are features of PTA process, enable the formation of high Si content alloyed layer with uniform distribution of fine primary Si paticle. High plasma arc current was beneficial to make the alloyed layer with smooth surface appearance in wide range of powder feeding rate, because enough volume of molten pool was necessary make alloyed layer. Uniform dispersion of fine primary Si particle with about 30${\mu}{\textrm}{m}$ in particle size can be obtained in layer with Si content ranging from 30 to 50 mass %. Hardness of alloyed layer increased with increasing Si content, but increasing rate of hardness differed with macrostructure of alloyed layer. Wear resistance of alloyed layer depended on $V_{si}$(volume fraction of primary Si) and was remarkably improved to two times of base metal at 20-30% $V_{si}$ without cracking, but no more improvement was obtained at larger $V_{si}$.

  • PDF

알루미늄 합금의 균열진전거동에 관한 연구 (A Study on the Effect of Aluminum Alloy on the Crack Growth Behaviour)

  • 이종형;이현환;안세원;박신규
    • 한국산업융합학회 논문집
    • /
    • 제7권2호
    • /
    • pp.145-151
    • /
    • 2004
  • According to the development of the aircraft industry, the fatigue strength of Aluminum Alloy becomes a great important material, but it seems that we don't understand an effect on the crack growth behaviour very well. This thesis is not only studied about the five kinds of 2017-T3, 2023-T3, 5083-0, 7075-T6, 7N01-T6 among the Aluminum Alloy which are the main materials of the aircraft, but also small or large relations against the fatigue strength of them. The consequence of the research was being progressed the accordance with the order. That is, The order is 2024-T3> 2017-T3> 7N01-T6> 7075-T6> 5083-0. These inclusion came out the acceleration phenomena in the crack growth behaviour among the high ${\Delta}K$ section Nevertheless I figured out their effects were being ignored at the 2b step.

  • PDF

고강도 알루미늄합금의 피로균열의 하한계 및 안정 전파거동 (A study on near threshold and stable crack growth behaviors in high strength aluminum alloys)

  • 옹장우;진근찬;김종배;김재훈;하태수
    • 대한기계학회논문집
    • /
    • 제12권2호
    • /
    • pp.271-277
    • /
    • 1988
  • 본 연구에서는 항공기, 압력용기 및 지상운송차량 등에 고강도와 용접성이 요구되는 고강도 알류미늄합금 7017T651, 7020T651 및 5083 H115에 대해 균열진전 하한계특성 및 안정 균열진전 하한계특성에 미치는 영향을 고찰 하고자 한다.

해수 환경하에서 알루미늄합금(5083F)의 외부전원법에 의한 최적 방식전위 결정에 관한 연구 (Investigation on Optimum Protection Potential Decision of Al Alloy(5083F) in Sea Water by Impressed Current Cathodic Protection)

  • 김성종;감정일;김종신
    • 한국표면공학회지
    • /
    • 제40권6호
    • /
    • pp.262-270
    • /
    • 2007
  • Recently, there has been a new appreciation of aluminum alloys as materials that are capable of reducing the environment load. This is because aluminum alloys are lightweight, easy to recycle, permit miniaturization, and have environmental friendly properties. In this study, we investigated the mechanical and electrochemical properties of 5083F aluminum alloys using slow strain rate test(SSRT) and potentiostatic tests under various potential conditions. In the potentiostatic tests, the current density in the potential range from -0.7 to -1.4V after 1,200 s was low. After considering the results of the potentiostatic tests, maximum tensile strength, yield strength, elongation, time-to-fracture, observation of fractured specimen and fractography analysis, the optimum protection potential range was between -1.3 and -0.7V(Ag/AgCl).