• 제목/요약/키워드: A356 cast alloy

검색결과 38건 처리시간 0.021초

A356합금을 이용한 정밀주조 Turbo Charger Wheel의 기계적 특성에 미치는 열처리의 영향 (Effect of Heat Treatment on the Mechanical Properties of Investment Casting Turbo Charger Wheel using A356 Alloy)

  • 김상미;우기도;김지영;김상혁;박상훈;강황진;박찬성
    • 한국주조공학회지
    • /
    • 제31권5호
    • /
    • pp.262-266
    • /
    • 2011
  • The aim of this study is to investigate aging behavior of A356 alloy for turbo charger part. The specimen was fabricated by investment casting. Solution heat treatment was performed at $525^{\circ}C$ for 8h and followed by aging treated at $160^{\circ}C$, $170^{\circ}C$ for 0.5~20h. And their microstructures and mechanical properties of the aged specimens were analyzed by scanning electron microscope and hardness tester, respectively. All the cast A356 alloy included eutectic Si particles. In the cast A356 alloy, eutectic Si phase mainly was formed along Chinese script phase. Vickers hardness of the cast was improved by aging treatment due to formation of ${\beta}$" phase and ${\beta}$' phase.

Al2Ca를 함유한 A356 합금에서의 다양한 열처리 조건에 따른 공정 Si 개량화 거동 (Modification Behavior of Eutectic Si with Varying Heat Treatment Conditions in A356 Alloy with Al2Ca)

  • 김세준;현승균;김세광;윤영옥
    • 한국주조공학회지
    • /
    • 제34권5호
    • /
    • pp.156-161
    • /
    • 2014
  • This study is focused on the effect of $Al_2Ca$ as a modifier on eutectic Si modification of A356 alloy. Microstructural observation was carried out for as-cast, as-solution treated and as-aged samples. Solution treatment and aging were performed for 2, 4, 6 and 10 hrs at $540^{\circ}C$ and $170^{\circ}C$, respectively. Although A356 alloy, which $Al_2Ca$ was added, has no significant difference in as-cast phases with normal A356 alloys, it shows much more modified eutectic Si, grain refinement and improved tensile property both in as-cast and as-heat treated conditions. TGA result shows that $Al_2Ca$ added A356 alloy has a certain improvement in oxidation resistance.

자동차휠용 A356 알루미늄 합금의 주조조직이 피로특성에 미치는 영향 (Effect of Cast Microstructure on Fatigue Behaviors of A356 Aluminum Alloy for Automotive Wheel)

  • 송전영;박중철;안용식
    • 한국주조공학회지
    • /
    • 제30권1호
    • /
    • pp.46-51
    • /
    • 2010
  • Recently, automotive industry is attempting to replace steels for automotive parts with light-weight alloys such as aluminum alloy, because of the growing environmental regulations governing exhaust gas and the engine effectiveness of a vehicle. The low cycle fatigue (LCF) and high cycle fatigue (HCF) properties as well as the microstructure and tensile property were investigated on the low pressure cast A356 aluminum alloy wheel, which was followed by T6 heat treatment. The cast microstructure of the alloy influenced significantly on the low cycle and high cycle fatigue behaviors. The rim part of cast aluminum alloy wheel showed higher low cycle and high cycle fatigue strength compared with the spoke part, which should be caused by higher cooling rate of rim part. The spoke part of the wheel showed coarser dendrite arm spacing (DAS) and wide eutectic zone in the microstructure, which resulted in the partial brittle fracture and lower fatigue life time.

나노/마이크로 프로브 기술을 통한 틱소/레오 캐스트의 시효경화 특성 조사 (Investigation on Age-hardening characteristic of thixo and rheocast by using Nano/Micro-probe Technology)

  • 조상현;이창수;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.322-325
    • /
    • 2006
  • The nano/microstructure and mechanical properties of the eutectic regions in thixo and rheo cast A356 alloy parts were investigated using nano/micro-indentation and mechanical scratching, combined with optical microscopy and atomic force microscope (AFM).Most eutectic Si crystals in the A356 alloy showed a modified morphology as fine-fibers, however Si particles of network in eutectic region was formed quickly with aging time increase in thixo-cast. The aging responses of the eutectic regions in both the thixo and rheo cast A356 alloys aged at $150^{\circ}C$ for different times (0, 2, 4, 8, 10, 16, 24, 36, and 72 h) were investigated. Both Vickers hardness ($H_V$) and indentation ($H_{IT}$) test results showed almost the same trend of aging curves, the peak was obtained at the same aging time of 10 h.

  • PDF

A356 합금 미세조직변화에 따른 기계적 특성에 관한 연구 (Mechanical Behavior of A356 depending on the Variation of Microstructure)

  • 김국주;권용남;이영선;이정환;이신호;이재현
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.273-276
    • /
    • 2004
  • A356 alloy is one of the most popular casting aluminum alloys due to its good castability. It is well known that the mechanical properties of A356 alloy strongly depend on its characteristic microstructure, such as the size of eutectic Si, primary $\alpha$ dendrite and so on. These microstructural features are determined during the casting and solidification process, which implies the strong relationship with mechanical properties with solidification methods. In the present study, the mechanical characteristics of A356 alloy was investigated by using squeeze cast control arm in terms of the microstructural features, such as the size of eutectic Si, primary a dendrite. By doing so, the most favorable microstructure of A356 could be determined for Al control arm that should be one of the most reliable parts in automobile.

  • PDF

주물 Preform을 이용한 단조 Lower Arm의 개발 (Development of Forged Lower Arm using the Cast Preform)

  • 이우식;김양묵;박병철;예병준
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.345-348
    • /
    • 2001
  • Nowadays, cast ingots has been used as preforms for forging to reduce the cost and the number of processes. In this study, the forging ability of Al cast alloys was investigated by using hot compression tests. Hot compression behavior of the cast Al alloys has been studied The flow stress increased by decreasing the compression temperature and by increasing the strain rate. In case of melt treatment the flow stress decreased comparing to untreated A356.0 Al alloy. Also, We developed the various forged lower control arm using the cast preform. The optimum design of product and cast preform was investigated After Prototyping of Al forged lower arm, durability and buckling test were performed.

  • PDF

EFFECT OF MICROSTRUCTURE ON MECHANICAL PROPERTIES IN FRICTION STIR WELDED CAST A356 ALUMINUM ALLOY

  • Sato, Yutaka S.;Kaneko, Takayasu;Urata, Mitsunori;Kokawa, Hiroyuki
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.493-498
    • /
    • 2002
  • Friction stir welding (FSW) is a relatively new solid-state joining process which can homogenize the heterogeneous microstructure by intensely plastic deformation arising from the rotation of the welding tool. The present study applied the FSW to an A356 aluminum (AI) alloy with the as-cast heterogeneous microstructure in the T6 temper condition, and examined an effect of microstructure on mechanical properties in the weld. The base material consisted of Al matrix with a high density of strengthening precipitates, large eutectic silicon and a lot of porosities. The FSW led to fragment of the eutectic silicon, extinction of the porosities and dissolution of the strengthening precipitates in the Al alloy. The dissolution of strengthening precipitates reduced the hardness of the weld around the weld center and the transverse ultimate tensile strength of the weld. Longitudinal tensile specimen containing only the stir zone showed the roughly same strength as the base material and a much larger elongation. Moreover, Charpy impact tests indicated that the stir zone had remarkably the higher absorbed energy than the base material. The higher mechanical properties of the stir zone were attributed to a homogenization of the as-cast heterogeneous microstructure by FSW.

  • PDF

나노/마이크로 인덴터와 AFM을 이용한 스퀴즈 캐스트 A356 합금의 시효경화특성 평가 (Evaluation of Age-Hardening Characteristics of Squeeze-Cast A356 Alloy by Using Micro/Nano Indenter with AFM)

  • 윤성원;김현일;강충길
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1398-1401
    • /
    • 2005
  • The nano/microstructure, the aging response (in T5 heat treatment), and the mechanical/tribological properties of the eutectic regions in squeeze-cast A356 alloy were investigated using nano/micro-indentation and mechanical scratching, combined wit optical microscopy and atomic force microscope(AFM). Most eutectic Si crystals in the A356 alloy showed a modified morphology as fine-fibers. The loading curve for the eutectic region was more irregular than that of the primary Al region due to the presence of various particles of varying strength. In addition, the eutectic region showed lower pile-up and higher elastic recovery than the primary Al region. The aging responses of the eutectic regions in the squeeze-cast A356 alloys aged at $150^{\circ}C$ for different times(0, 2, 4, 8, 10, 16, 24, 36 and 72 h) were investigated. As the aging time increased, acicular Si particles in the eutectic regions gradually came to a fine structure. Both Vickers hardness ($H_V$) and indentation ($H_{IT}$) test results showed almost the same trend of aging curves, and the peak was obtained at the same aging time of 10 h. A remarkable size-dependence of the tests was found. The friction coefficient for the eutectic region was lower than that for the primary Al region.

  • PDF

A356 합금의 고주기 피로특성에 미치는 미소기공율의 영향 (Effect of Microporosity on High Cycle Fatigue Property of A356 Alloy)

  • 류석종;이충도
    • 한국주조공학회지
    • /
    • 제31권4호
    • /
    • pp.198-204
    • /
    • 2011
  • The present study was aimed to investigate the dependence of fatigue property on microporosity variation of low-pressure die-cast (LPDC) A356 alloy. The fatigue property of A356 alloy was evaluated through high cycle fatigue test, and the microporosity-terms used were the fractographic porosity measured from SEM observation on fractured surface and the volumetric porosity obtained through the density measurement using Archimedes's principle. The number of cycles to failure of A356 alloys depends obviously upon the variation of fractographic porosity, and can describe in terms of the defect susceptibility which depends on the microporosity variation at a given value of stress amplitude. The modified Basquin's equation was suggested through the combination of microporosity variation and static maximum tensile stress to fatigue strength coefficient. Using modified Basquin's equation, it could suggest that the maximum values of fatigue strength coefficient and exponent achievable in defect-free condition of A356 alloy are 265 MPa, -0.07, respectively.

Alloy Wheel용 저압 주조 A356-T6 합금의 기계적 특성 (Mechanical Properties of Low-Pressure Die Cast A356-T6 alloys for Automotive Wheels)

  • 유봉준;김정호;윤형석;어순철
    • 한국주조공학회지
    • /
    • 제34권1호
    • /
    • pp.6-13
    • /
    • 2014
  • The mechanical properties of low-pressure die cast (LPDC) A356-T6 automotive road wheels are evaluated and correlated with their corresponding microstructures. In this study, two types of alloy wheels processed using different LPDC gating system are investigated. The yield stress, tensile stress, and elongation values tested at room temperature are correlated with the secondary dendrite arm spacing (SDAS) with respect to the gating system, and are also compared with similar studies. The SDAS and precipitates are examined using optical microscopy, scanning electron microscopy (SEM) and energy-dispersive spectroscopy. The phase information is also investigated using X-ray diffraction. Charpy impact tests are also performed from $-100^{\circ}C$ to $200^{\circ}C$, and the fracture surfaces are examined using SEM. The impact energy is demonstrated to increase with increasing temperatures without exhibiting specific transition behaviors as in other nonferrous alloys. The fracture toughness is also evaluated using three point bend test with single-edged bend specimens. The obtained fracture toughness values are in good agreement with those in similar studies.