• Title/Summary/Keyword: A1B Climate Change Scenario

Search Result 98, Processing Time 0.021 seconds

Prediction of Land-cover Changes and Analysis of Paddy Fields Changes Based on Climate Change Scenario (A1B) in Agricultural Reservoir Watersheds (기후변화 시나리오 (A1B)에 따른 농업용 저수지 유역의 미래 토지피복변화 예측 및 논 면적 변화 특성 분석)

  • Oh, Yun-Gyeong;Yoo, Seung-Hwan;Lee, Sang-Hyun;Park, Na-Young;Choi, Jin-Yong;Yun, Dong-Koun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.77-86
    • /
    • 2012
  • This study was aim to predict future land-cover changes and to analyze regional land-cover changes in irrigation areas and agricultural reservoir watersheds under climate change scenario. To simulate the future land-cover under climate change scenario - A1B of the SRES (Special Report on Emissions Scenarios), Dyna-CLUE (Conversion of Land Use Change and its Effects) was applied for modeling of competition among land-use types in relation to socioeconomic and biophysical driving factors. For the study areas, 8 agricultural reservoirs were selected from 8 different provinces covering all around nation. The simulation results from 2010 to 2100 suggested future land-cover changes under the scenario conditions. For Madun reservoir in Gyeonggi-do, total decrease amount of paddy area was a similar amount of 'Base demand scenario' of Water Vision 2020 published by MLTMA (Ministry of Land, Transport and Maritime Affairs), while the decrease amounts of paddy areas in other sites were less than the amount of 'High demand scenario' of Water Vision 2020. Under A1B scenario, all the land-cover results showed only slight changes in irrigation areas of agricultural reservoirs and most of agricultural reservoir watersheds will be increased continuously for forest areas. This approach could be useful for evaluating and simulating agricultural water demand in relation to land-use changes.

The Effect of Climate Change on Water Quality Analysis in a Dam River Basin (기후변화시나리오에 따른 댐유역의 장기 수질변화 예측)

  • Jung, Je Ho;Kim, Dong Il;Choi, Hyun Gu;Han, Kun Yeun
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.2
    • /
    • pp.107-121
    • /
    • 2011
  • To assess the impact of climate change on water quality in an impounded river basin, this study estimated future air temperature and rainfall in the years of 2020, 2050 and 2080 by statistically downscaling the simulation results from two GCM models combined with two emission scenarios (A2 and B1). Both scenarios were selected from the Special Report on Emission Scenarios (SRES) suggested by IPCC. The A2 scenario represents an extreme condition whereas the B1 scenario represents a clean and energy efficient condition which is similar to that of study basin. With the results of estimated climate factors and land use data, the discharge and the concentrations of BOD, TN and TP in the Andong dam basins were simulated using the SWAT model. The change in BOD concentration for the B1 emission scenario was greater than the A2 scenario in the annual increase range and the pollution level. The concentration of TN was decreased during March? June which is drought period and increased again afterward. In contrast to TN, the concentration of TP was generally decreased. The change in TP concentration was greater for the B1 scenario than the A2 scenario.

Estimation of Regional Probable Rainfall based on Climate Change Scenarios (기후변화 시나리오에 따른 지역별 확률강우량)

  • Kim, Young-Ho;Yeo, Chang-Geon;Seo, Geun-Soon;Song, Jai-Woo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.29-35
    • /
    • 2011
  • This research proposes the suitable method for estimating the future probable rainfall based in 2100 on the observed rainfall data from main climate observation stations in Korea and the rainfall data from the A1B climate change scenario in the Korea Meteorological Administration. For all those, the frequency probable rainfall in 2100 was estimated by the relationship between average values of 24-hours annual maximum rainfalls and related parameters. Three methods to estimate it were introduced; First one is the regressive analysis method by parameters of probable distribution estimated by observed rainfall data. In the second method, parameters of probable distribution were estimated with the observed rainfall data. Also the rainfall data till 2100 were estimated by the A1B scenario of the Korea Meteorological Administration. Last method was that parameters of probable distribution and probable rainfall were estimated by the A1B scenario of the Korea Meteorological Administration. The estimated probable rainfall by the A1B scenario was smaller than the observed rainfall data, so it is required that the estimated probable rainfall was calibrated by the quantile mapping method. After that calibration, estimated probable rainfall data was averagely became approximate 2.3 to 3.0 times. When future probable rainfall was the estimated by only observed rainfall, estimated probable rainfall was overestimated. When future probable rainfall was estimated by the A1B scenario, although it was estimated by similar pattern with observed rainfall data, it frequently does not consider the regional characteristics. Comparing with average increased rate of 24-hours annual maximum rainfall and increased rate of probable rainfall estimated by three methods, optimal method of estimated future probable rainfall would be selected for considering climate change.

Vulnerability Assessment of Forest Distribution by the Climate Change Scenarios (기후변화 시나리오에 따른 산림분포 취약성 평가)

  • Lee, Sangchul;Choi, Sungho;Lee, Woo-Kyun;Park, Taejin;Oh, Suhyun;Kim, Su-Na
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.2
    • /
    • pp.256-265
    • /
    • 2011
  • This study was aiming at assessing the vulnerability of forest distribution by the A2 and B1 climate change scenarios of Intergovernmental Panel on Climate Change (IPCC). The vulnerability of forest distribution was assessed using its sensitivity and adaptation to climate change with the help of the simulations of Korean-specific forest distribution model, so-called the Thermal Analogy Group (TAG), and the Plant Functional Type (PFT) defined in the HyTAG (Hydrological and Thermal Analogy Groups) model. As a result, the vulnerable area occupied 30.78% and 2.81% of Korea in A2 and B1 scenario, respectively. When it comes to the administrative districts, Pusan in A2 and Daegu in B1 appeared the most vulnerable area. This study would be employed into preparation of adaptative measures for forest in future in terms of using climate change scenarios reflecting different future development conditions.

A Study on Selection of Standard Scenarios in Korea for Climate Change (기후변화 표준 시나리오 선정에 관한 연구)

  • Lee, Jae-Kyoung;Kim, Young-Oh
    • Journal of Climate Change Research
    • /
    • v.1 no.1
    • /
    • pp.59-73
    • /
    • 2010
  • One of the most important issues for projecting future water resources and establishing climate change adaptation strategies is 'uncertainty'. In Korea, climate change research results were very heterogeneous even in a same basin, but there have been few climate change studies dealt with the uncertainty reduction. This is because emission scenarios, GCMs, downscaling, and rainfall-runoff models that were used in the previous studies were almost all different. In this research, fifty one GCM scenarios based A and B emission scenarios were downloaded and then compared with the observed values for a period from January 2001 to December 2008. The downloaded GCM scenarios in general simulated well the observed but did not simulated well the observed precipitation especially for the flood season in Korea. The accuracy of each GCM scenario was measured with the model efficiency, PDF-based, and Relative Entropy methodology. Among the selected GCM scenarios with three methodologies, the four common GCM scenarios(CGCM2.3.2(MRI-M, B1), MIROC3.2medress(NIES, B1), CGCM2.3.2(MRI-M, A2), CGCM2.3.2(MRI-M, A1B) were finally selected. Results of the four selected GCMs were heterogeneity and projected increases of precipitation for the Korean Peninsula by from 27.36% to 12.49%, respectively. It seems very risky to rely a water planning or a management policy on use of a single climate change scenario and from this research results. Therefore, the four selected GCM scenarios proposed quantitatively were considered firstly for the water supply in the dry season and the drought management strategy in the Korean Peninsula for the future.

Prediction of Land-cover Change Based on Climate Change Scenarios and Regional Characteristics using Cluster Analysis (기후변화 시나리오에 따른 미래 토지피복변화 예측 및 군집분석을 이용한 지역 특성 분석)

  • Oh, Yun-Gyeong;Choi, Jin-Yong;Yoo, Seung-Hwan;Lee, Sang-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.31-41
    • /
    • 2011
  • This study was conducted to predict future land-cover changes under climate change scenarios and to cluster analysis of regional land-cover characteristics. To simulate the future land-cover according to climate change scenarios - A1B, A2, and B1 of the Special Report on Emissions Scenarios (SRES), Dyna-CLUE (Conversion of Land Use Change and its Effects) was applied for modeling of competition among land-use types in relation with socioeconomic and biophysical driving factors. Gyeonggi-do were selected as study areas. The simulation results from 2010 to 2040 suggested future land-cover changes under the scenario conditions. All scenarios resulted in a gradual decrease in paddy area, while upland area continuously increased. A1B scenario showed the highest increase in built-up area, but all scenarios showed only slight changes in forest area. As a result of cluster analysis with the land-cover component scores, 31 si/gun in Gyeonggi-do were classified into three clusters. This approach is expected to be useful for evaluating and simulating land-use changes in relation to development constraints and scenarios. The results could be used as fundamental basis for providing policy direction by considering regional land-cover characteristics.

Analysis of Climate Characteristics Observed over the Korean Peninsula for the Estimation of Climate Change Vulnerability Index (기후변화 취약성 지수 산출을 위한 한반도 관측 기후 특성 분석)

  • Nam, Ki-Pyo;Kang, Jeong-Eon;Kim, Cheol-Hee
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.6
    • /
    • pp.891-905
    • /
    • 2011
  • Climate vulnerability index is usually defined as a function of the climate exposure, sensitivity, and adaptive capacity, which requires adequate selection of proxy variables of each variable. We selected and used 9 proxy variables related to climate exposure in the literature, and diagnosed the adequacy of them for application in Korean peninsula. The selected proxy variables are: four variables from temperature, three from precipitation, one from wind speed, and one from relative humidity. We collected climate data over both previous year (1981~2010) and future climate scenario (A1B scenario of IPCC SERES) for 2020, 2050, and 2100. We introduced the spatial and temporal diagnostic statistical parameters, and evaluated both spatial and time variabilities in the relative scale. Of 9 proxy variables, effective humidity indicated the most sensitive to climate change temporally with the biggest spatial variability, implying a good proxy variable in diagnostics of climate change vulnerability in Korea. The second most sensitive variable is the frequency of strong wind speed with a decreasing trend, suggesting that it should be used carefully or may not be of broad utility as a proxy variable in Korea. The A1B scenario of future climate in 2020, 2050 and 2100 matches well with the extension of linear trend of observed variables during 1981~2010, indicating that, except for strong wind speed, the selected proxy variables can be effectively used in calculating the vulnerability index for both past and future climate over Korea. Other local variabilities for the past and future climate in association with climate exposure variables are also discussed here.

Analysis of A1B Climate Change Scenario in the Watersheds of 15 Multi-purpose Dams in South Korea (우리나라 15개 다목적댐 유역별 A1B 기후변화 시나리오 분석)

  • Kim, Hong-Rae;Yi, Hye-Suk;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.2
    • /
    • pp.187-194
    • /
    • 2011
  • This study analyzed the A1B climate change scenario provided by National Institute of Meteorological Research (NIMR), Korea, to investigate potential climate changes in watersheds of 15 multi-purpose dams in South Korea. The A1B climate change scenario is produced by Regional Climate Model (RCM) with 27 km horizontal grid spacings using a one-way nesting technique with Global Climate Model (GCM). Relative to present climate conditions (1971~ 2000), the modeled 10-year averaged daily temperatures at the watersheds of the 15 multi-purpose dams continuously increased to year 2100, whereas precipitation changes were varied regionally (north, central, and south regions of South Korea). At two watersheds located in Gangwon-province (north region), the modeled temporal variations of precipitation rapidly increased in the 2090's after a slow decrease that had occurred since the 2050's. At seven watersheds in the central region, including Gyeongsangbuk-province to Jeollanam-province, the modeled temporal variations of precipitation increase showed 10-year periodic changes. At six watersheds in the south region, the modeled temporal variations of precipitation increased since the 2070's after a rapid decrease in the 2060's. Compared to the climate conditions of the late of 20th century (1971~2000), the number of rainy days and precipitation intensity increased (3% and 6~12%, respectively) in the late 21st century (2071~2100). The frequency of precipitation events tended to increase with precipitation intensity in all regions. The frequency of heavy precipitation events (>50 mm $d^{-1}$) increased with >100% in the north region, 60~100% in the central region, and 20~60% in the south region.

Analyzing Consumptive Use of Water and Yields of Paddy Rice by Climate Change (기후변화 시나리오에 따른 미래 논벼의 소비수량 및 생산량 변화 분석)

  • Lee, Tae-Seok;Choi, Jin-Yong;Yoo, Seung-Hwan;Lee, Sang-Hyun;Oh, Yun-Gyeong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.1
    • /
    • pp.47-54
    • /
    • 2012
  • Agriculture is dependable to weather condition and its change so that it is necessary to understand the impacts of climatic change. The aim of this study is to analyze the change of consumptive use of water and rice yield due to climate change using CERES-Rice. In this study, the weather data of three emission scenario of A1B, A2 and B1 created from CGCM (Coupled General Circulation Model) were used from 2011 to 2100, and downscaled daily weather data were simulated using LARS-WG (Long Ashton Research Station Weather Generator). The input data for cultivated condition for simulating CERSE (Crop-Environment Resource Synthesis)-Rice were created referring to standard cultivation method of paddy rice in Korea. The results showed that consumptive uses of water for paddy rice were projected decreasing to 4.8 % (2025s), 9.1 % (2055s), 12.6 % (2085s) comparing to the baseline value of 403.5 mm in A2 scenario. The rice yield of baseline was 450.7 kg/10a and projected increasing to -0.4 % (2025s), 3.9 % (2055s), 17.5 % (2085s) in A1B scenario. The results demonstrated relationships between consumptive use of water and rice yields due to climate change and can be used for the agricultural water resources development planning and cultivation method of paddy rice for the future.

Climate Change Impacts on Agricultural Water in Nakdong-river Watershed (기후변화에 따른 낙동강 유역 농업용수 영향 분석)

  • Jee, Yong-Keun;Lee, Jin-Hee;Kim, Sang-Dan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.3
    • /
    • pp.149-157
    • /
    • 2012
  • For the systemic management and planning of future agricultural water resources, deriving and analyzing the various results of climate change are necessary to respond the uncertainties of climate change. This study assessed the impact of climate change on the rainfall, temperature, and agricultural water requirement targeting in the Nakdong-river's basin periodically according to socioeconomic driving factors under the scenarios A1B, A2 and B1 of the Special Report on Emission Scenarios (SRES) through the various IPCC GCMs. As a result of future rainfall change (2011~2100), increasing or decreasing tendency of rainfall change for future periods did not show a clear trend for three rainfall observatories, Daegu, Busan and Gumi. The characteristics of the temperature change consistently show a tendency to increase, and in the case of Daegu observatory, high temperature growth was shown. Especially, it was increased by 93.3 % in the period of future3 (2071~2100) for A2 scenario. According to the scenario and periodic analyses on the agricultural water demand, which was thought to be dependent on rainfall and temperature, the agricultural water demand increased at almost every period except during the Period Future1 (2011~2040) with different increase sizes, and the scenario-specific results were shown to be similar. As for areas, the agricultural water demand showed more changes in the sub-basin located by the branch of Nakdong-river than at the mainstream of the River.