• Title/Summary/Keyword: A.I: Artificial Intelligence

Search Result 287, Processing Time 0.023 seconds

Fully Automatic Coronary Calcium Score Software Empowered by Artificial Intelligence Technology: Validation Study Using Three CT Cohorts

  • June-Goo Lee;HeeSoo Kim;Heejun Kang;Hyun Jung Koo;Joon-Won Kang;Young-Hak Kim;Dong Hyun Yang
    • Korean Journal of Radiology
    • /
    • v.22 no.11
    • /
    • pp.1764-1776
    • /
    • 2021
  • Objective: This study aimed to validate a deep learning-based fully automatic calcium scoring (coronary artery calcium [CAC]_auto) system using previously published cardiac computed tomography (CT) cohort data with the manually segmented coronary calcium scoring (CAC_hand) system as the reference standard. Materials and Methods: We developed the CAC_auto system using 100 co-registered, non-enhanced and contrast-enhanced CT scans. For the validation of the CAC_auto system, three previously published CT cohorts (n = 2985) were chosen to represent different clinical scenarios (i.e., 2647 asymptomatic, 220 symptomatic, 118 valve disease) and four CT models. The performance of the CAC_auto system in detecting coronary calcium was determined. The reliability of the system in measuring the Agatston score as compared with CAC_hand was also evaluated per vessel and per patient using intraclass correlation coefficients (ICCs) and Bland-Altman analysis. The agreement between CAC_auto and CAC_hand based on the cardiovascular risk stratification categories (Agatston score: 0, 1-10, 11-100, 101-400, > 400) was evaluated. Results: In 2985 patients, 6218 coronary calcium lesions were identified using CAC_hand. The per-lesion sensitivity and false-positive rate of the CAC_auto system in detecting coronary calcium were 93.3% (5800 of 6218) and 0.11 false-positive lesions per patient, respectively. The CAC_auto system, in measuring the Agatston score, yielded ICCs of 0.99 for all the vessels (left main 0.91, left anterior descending 0.99, left circumflex 0.96, right coronary 0.99). The limits of agreement between CAC_auto and CAC_hand were 1.6 ± 52.2. The linearly weighted kappa value for the Agatston score categorization was 0.94. The main causes of false-positive results were image noise (29.1%, 97/333 lesions), aortic wall calcification (25.5%, 85/333 lesions), and pericardial calcification (24.3%, 81/333 lesions). Conclusion: The atlas-based CAC_auto empowered by deep learning provided accurate calcium score measurement as compared with manual method and risk category classification, which could potentially streamline CAC imaging workflows.

Improvement of Personal Information Protection Laws in the era of the 4th industrial revolution (4차 산업혁명 시대의 개인정보보호법제 개선방안)

  • Choi, Kyoung-jin
    • Journal of Legislation Research
    • /
    • no.53
    • /
    • pp.177-211
    • /
    • 2017
  • In the course of the emergence and development of new ICT technologies and services such as Big Data, Internet of Things and Artificial Intelligence, the future will change by these new innovations in the Fourth Industrial Revolution. The future of this fourth industrial revolution will change and our future will be data-based society or economy. Since there is personal information at the center of it, the development of the economy through the utilization of personal information will depend on how to make the personal information protection laws. In Korea, which is trying to lead the 4th industrial revolution, it is a legal interest that can not give up the use of personal information, and also it is an important legal benefit that can not give up the personal interests of individuals who want to protect from personal information. Therefore, it is necessary to change the law on personal information protection in a rational way to harmonize the two. In this regard, this article discusses the problems of duplication and incompatibility of the personal information protection law, the scope of application of the personal information protection law and the uncertainty of the judgment standard, the lack of flexibility responding to the demand for the use of reasonable personal information, And there is a problem of reverse discrimination against domestic area compared to the regulated blind spot in foreign countries. In order to solve these problems and to improve the legislation of personal information protection in the era of the fourth industrial revolution, we proposed to consider both personal information protection and safe use by improving the purpose and regulation direction of the personal information protection law. The balance and harmony between the systematical maintenance of the personal information protection legislation and laws and regulations were also set as important directions. It is pointed out that the establishment of rational judgment criteria and the legislative review to clarify it are necessary for the constantly controversial personal information definition regulation and the method of allowing anonymization information as the intermediate domain. In addition to the legislative review for the legitimate and non-invasive use of personal information, there is a need to improve the collective consent system for collecting personal information to differentiate the subject and to improve the legislation to ensure the effectiveness of the regulation on the movement of personal information between countries. In addition to the issues discussed in this article, there may be a number of challenges, but overall, the protection and use of personal information should be harmonized while maintaining the direction indicated above.

An Investigation Into the Effects of AI-Based Chemistry I Class Using Classification Models (분류 모델을 활용한 AI 기반 화학 I 수업의 효과에 대한 연구)

  • Heesun Yang;Seonghyeok Ahn;Seung-Hyun Kim;Seong-Joo Kang
    • Journal of the Korean Chemical Society
    • /
    • v.68 no.3
    • /
    • pp.160-175
    • /
    • 2024
  • The purpose of this study is to examine the effects of a Chemistry I class based on an artificial intelligence (AI) classification model. To achieve this, the research investigated the development and application of a class utilizing an AI classification model in Chemistry I classes conducted at D High School in Gyeongbuk during the first semester of 2023. After selecting the curriculum content and AI tools, and determining the curriculum-AI integration education model as well as AI hardware and software, we developed detailed activities for the program and applied them in actual classes. Following the implementation of the classes, it was confirmed that students' self-efficacy improved in three aspects: chemistry concept formation, AI value perception, and AI-based maker competency. Specifically, the chemistry classes based on text and image classification models had a positive impact on students' self-efficacy for chemistry concept formation, enhanced students' perception of AI value and interest, and contributed to improving students' AI and physical computing abilities. These results demonstrate the positive impact of the Chemistry I class based on an AI classification model on students, providing evidence of its utility in educational settings.

A Study On The Application of RPA(Robotics Process Automation) For Productivity Of Business Documents (비즈니스 문서의 생산성 향상을 위한 RPA(Robotics Process Automation)적용방안에 대한 연구)

  • Hyun, Young Geun;Lee, Joo Yeoun
    • Journal of Digital Convergence
    • /
    • v.17 no.9
    • /
    • pp.199-212
    • /
    • 2019
  • Digitalization is creating a variety of changes and innovations in our business environment. In manufacturing, robots have long been used for automation to innovate processing speed and quality. The RPA brings these innovations in manufacturing sites to the office space. The purpose of this study is to improve productivity for simple, repetitive tasks in these office space. For identify the potential of automation related to productivity improvement, I looked at the concept of business automation, and then simulated the five areas of business documentation works with agile methodology. In conclusion, I confirmed that productivity improvement of 97.3% in quality inspection and 31.7% in editorial design is possible, and examined the direction to apply to actual work. Based on these results, future study will explore the application of Intelligent Process Automation (IPA).

A Study on the Analysis and the Direction of Improvement of the Korean Military C4I System for the Application of the 4th Industrial Revolution Technology (4차 산업혁명 기술 적용을 위한 한국군 C4I 체계 분석 및 성능개선 방향에 관한 연구)

  • Sangjun Park;Jee-won Kim;Jungho Kang
    • Convergence Security Journal
    • /
    • v.22 no.2
    • /
    • pp.131-141
    • /
    • 2022
  • Future battlefield domains are expanding to ground, sea, air, space, and cyber, so future military operations are expected to be carried out simultaneously and complexly in various battlefield domains. In addition, the application of convergence technologies that create innovations in all fields of economy, society, and defense, such as artificial intelligence, IoT, and big data, is being promoted. However, since the current Korean military C4I system manages warfighting function DBs in one DB server, the efficiency of combat performance is reduced utilization and distribution speed of data and operation response time. To solve this problem, research is needed on how to apply the 4th industrial revolution technologies such as AI, IoT, 5G, big data, and cloud to the Korean military C4I system, but research on this is insufficient. Therefore, this paper analyzes the problems of the current Korean military C4I system and proposes to apply the 4th industrial revolution technology in terms of operational mission, network and data link, computing environment, cyber operation, interoperability and interlocking capabilities.

A study on the use of a Business Intelligence system : the role of explanations (비즈니스 인텔리전스 시스템의 활용 방안에 관한 연구: 설명 기능을 중심으로)

  • Kwon, YoungOk
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.155-169
    • /
    • 2014
  • With the rapid advances in technologies, organizations are more likely to depend on information systems in their decision-making processes. Business Intelligence (BI) systems, in particular, have become a mainstay in dealing with complex problems in an organization, partly because a variety of advanced computational methods from statistics, machine learning, and artificial intelligence can be applied to solve business problems such as demand forecasting. In addition to the ability to analyze past and present trends, these predictive analytics capabilities provide huge value to an organization's ability to respond to change in markets, business risks, and customer trends. While the performance effects of BI system use in organization settings have been studied, it has been little discussed on the use of predictive analytics technologies embedded in BI systems for forecasting tasks. Thus, this study aims to find important factors that can help to take advantage of the benefits of advanced technologies of a BI system. More generally, a BI system can be viewed as an advisor, defined as the one that formulates judgments or recommends alternatives and communicates these to the person in the role of the judge, and the information generated by the BI system as advice that a decision maker (judge) can follow. Thus, we refer to the findings from the advice-giving and advice-taking literature, focusing on the role of explanations of the system in users' advice taking. It has been shown that advice discounting could occur when an advisor's reasoning or evidence justifying the advisor's decision is not available. However, the majority of current BI systems merely provide a number, which may influence decision makers in accepting the advice and inferring the quality of advice. We in this study explore the following key factors that can influence users' advice taking within the setting of a BI system: explanations on how the box-office grosses are predicted, types of advisor, i.e., system (data mining technique) or human-based business advice mechanisms such as prediction markets (aggregated human advice) and human advisors (individual human expert advice), users' evaluations of the provided advice, and individual differences in decision-makers. Each subject performs the following four tasks, by going through a series of display screens on the computer. First, given the information of the given movie such as director and genre, the subjects are asked to predict the opening weekend box office of the movie. Second, in light of the information generated by an advisor, the subjects are asked to adjust their original predictions, if they desire to do so. Third, they are asked to evaluate the value of the given information (e.g., perceived usefulness, trust, satisfaction). Lastly, a short survey is conducted to identify individual differences that may affect advice-taking. The results from the experiment show that subjects are more likely to follow system-generated advice than human advice when the advice is provided with an explanation. When the subjects as system users think the information provided by the system is useful, they are also more likely to take the advice. In addition, individual differences affect advice-taking. The subjects with more expertise on advisors or that tend to agree with others adjust their predictions, following the advice. On the other hand, the subjects with more knowledge on movies are less affected by the advice and their final decisions are close to their original predictions. The advances in predictive analytics of a BI system demonstrate a great potential to support increasingly complex business decisions. This study shows how the designs of a BI system can play a role in influencing users' acceptance of the system-generated advice, and the findings provide valuable insights on how to leverage the advanced predictive analytics of the BI system in an organization's forecasting practices.

Keyword Analysis of Data Technology Using Big Data Technique (빅데이터 기법을 활용한 Data Technology의 키워드 분석)

  • Park, Sung-Uk
    • Journal of Korea Technology Innovation Society
    • /
    • v.22 no.2
    • /
    • pp.265-281
    • /
    • 2019
  • With the advent of the Internet-based economy, the dramatic changes in consumption patterns have been witnessed during the last decades. The seminal change has led by Data Technology, the integrated platform of mobile, online, offline and artificial intelligence, which remained unchallenged. In this paper, I use data analysis tool (TexTom) in order to articulate the definitfite notion of data technology from Internet sources. The data source is collected for last three years (November 2015 ~ November 2018) from Google and Naver. And I have derived several key keywords related to 'Data Technology'. As a result, it was found that the key keyword technologies of Big Data, O2O (Offline-to-Online), AI, IoT (Internet of things), and cloud computing are related to Data Technology. The results of this study can be used as useful information that can be referred to when the Data Technology age comes.

Study on Development of LED Camping Light Design Based on IOT and Emotional Lighting Contents (IOT 및 감성조명 콘텐츠 기반의 LED 캠핑등 디자인 개발에 관한 연구)

  • Kim, Hee-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.12
    • /
    • pp.332-342
    • /
    • 2018
  • This study is aimed at suggesting information about technical choices for designing LED camping lights based on emotional lighting contents of integrated IOT and design areas which take a central role in creation and knowledge based industries and the procedure for materializing them. 'i-Light,' a portable LED camping light, is 'connected lighting' connecting men, space and emotion and a smart camping light based on IOT and emotional lighting contents. 'i-Light' has two functions. One is about lighting for adjusting color and color temperature naturally and the other is about safety for detecting harmful gases. 'i-Light' also has various emotional functions for experiencing interaction and taste of light. For the purpose, portable LED camping lights were designed, first of all, and then a highly color rendering/full-color lighting module, a smart sensor module and an IOT device platform were developed. In addition, efforts were made to establish detailed data about emotional lighting contents and to develop a Web application based on them. Finally, prototypes of portable LED camping lights were made to get a test bench and usability evaluation from related organizations. According to the results, all of 12 developed emotional lighting contents and three IOT safety sensors were suitable and prototypes were satisfactory. This paper will suggest a direction about actual technical choices for development of contents and products integrating artificial intelligence and big data and about the procedure for materializing them.

A fundamental study on the automation of tunnel blasting design using a machine learning model (머신러닝을 이용한 터널발파설계 자동화를 위한 기초연구)

  • Kim, Yangkyun;Lee, Je-Kyum;Lee, Sean Seungwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.5
    • /
    • pp.431-449
    • /
    • 2022
  • As many tunnels generally have been constructed, various experiences and techniques have been accumulated for tunnel design as well as tunnel construction. Hence, there are not a few cases that, for some usual tunnel design works, it is sufficient to perform the design by only modifying or supplementing previous similar design cases unless a tunnel has a unique structure or in geological conditions. In particular, for a tunnel blast design, it is reasonable to refer to previous similar design cases because the blast design in the stage of design is a preliminary design, considering that it is general to perform additional blast design through test blasts prior to the start of tunnel excavation. Meanwhile, entering the industry 4.0 era, artificial intelligence (AI) of which availability is surging across whole industry sector is broadly utilized to tunnel and blasting. For a drill and blast tunnel, AI is mainly applied for the estimation of blast vibration and rock mass classification, etc. however, there are few cases where it is applied to blast pattern design. Thus, this study attempts to automate tunnel blast design by means of machine learning, a branch of artificial intelligence. For this, the data related to a blast design was collected from 25 tunnel design reports for learning as well as 2 additional reports for the test, and from which 4 design parameters, i.e., rock mass class, road type and cross sectional area of upper section as well as bench section as input data as well as16 design elements, i.e., blast cut type, specific charge, the number of drill holes, and spacing and burden for each blast hole group, etc. as output. Based on this design data, three machine learning models, i.e., XGBoost, ANN, SVM, were tested and XGBoost was chosen as the best model and the results show a generally similar trend to an actual design when assumed design parameters were input. It is not enough yet to perform the whole blast design using the results from this study, however, it is planned that additional studies will be carried out to make it possible to put it to practical use after collecting more sufficient blast design data and supplementing detailed machine learning processes.

Proposal for the 『Army TIGER Cyber Defense System』 Installation capable of responding to future enemy cyber attack (미래 사이버위협에 대응 가능한 『Army TIGER 사이버방호체계』 구축을 위한 제언)

  • Byeong-jun Park;Cheol-jung Kim
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.157-166
    • /
    • 2024
  • The Army TIGER System, which is being deployed to implement a future combat system, is expected to bring innovative changes to the army's combat methods and comabt execution capability such as mobility, networking and intelligence. To this end, the Army will introduce various systems using drones, robots, unmanned vehicles, AI(Artificial Intelligence), etc. and utilize them in combat. The use of various unmanned vehicles and AI is expected to result in the introduction of equipment with new technologies into the army and an increase in various types of transmitted information, i.e. data. However, currently in the military, there is an acceleration in research and combat experimentations on warfigthing options using Army TIGER forces system for specific functions. On the other hand, the current reality is that research on cyber threats measures targeting information systems related to the increasing number of unmanned systems, data production, and transmission from unmanned systems, as well as the establishment of cloud centers and AI command and control center driven by the new force systems, is not being pursued. Accordingly this paper analyzes the structure and characteristics of the Army TIGER force integration system and makes suggestions for necessity of building, available cyber defense solutions and Army TIGER integrated cyber protections system that can respond to cyber threats in the future.