• Title/Summary/Keyword: A.C assisted field

Search Result 52, Processing Time 0.027 seconds

Fabrication of EPD Films by Applying a.c Field Assisted Method (수직보조전계 인가방식에 의한 전기영동 전착막의 제작)

  • Jeon, Yong-Woo;Park, Seong-Beom;Soh, Dea-Wha
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.107-110
    • /
    • 2002
  • The electrophoretic deposition (EPD) technique have been applied to fabricating superconducting films and wires in former researches of our Lab. However, the particles of EPD films were usually deposited random1y on the metal substrate, the vertically combined a.c and d.c fields were applied to the EPD electrodes for orienting and densifying the particles of high $T_{c}$ superconducting deposition film on the substrate metal. Therefore, the surface states of EPD films by this combined fields could be oriented and affect to the electric properties increasing of superconducting films. The proposed method modified by a.c. assisted field to the conventional electrophoresis system was suitable to obtain improved properties with particle oriented deposition and densification.

  • PDF

Superconducting film fabrication using field Assisted Electrophoresis (보조전계를 이용한 전기영동 초전도 막의 제작)

  • 소대화;전용우
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.2
    • /
    • pp.157-162
    • /
    • 2003
  • For fabricating high T$\sub$c/ superconducting deposition film, novel electrophoretic deposition (EPD) technique applied to deposit surface charged particles on metal substrate with only d.c field has been studied. However, the electric properties of superconducting film could not be improved easily by this way, because the particles of EPD film were usually deposited randomly on metal substrate without any directional orientation affected to its critical current density. For the purpose of obtaining partcle orientation on the EPD films, the new method modified by a.c. assisted field to the conventional electrophoresis system was investigated to improve the particle deposition density and to increase the contacting area among the particles with highly oriented particle deposition of BSCCO superconducting film.

Superconducting Film Fabrication using Field Assisted Electrophoresis (보조전계를 이용한 전기영동 초전도 막의 제작)

  • ;;;;Fan Zhanguo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.105-108
    • /
    • 2002
  • For fabricating high T$\sub$c/ superconducting deposited film, novel electrophoretic deposition technique applied to deposit surface charged Particles on metal substrate with oxy d.c field has been studied. The electric properties of superconducting film don't improve easily because the particles of deposition film are deposited randomly on substrate and don't make orientation affected to its critical current density. In this paper, we studied conventional electrophoresis in addition to a.c field assisted for the improvement of BSCCO superconducting film with high orientation of deposition particles.

  • PDF

Nitrogen Incorporation of Nanostructured Amorphous Carbon Thin Films by Aerosol-Assisted Chemical Vapor Deposition

  • Fadzilah, A.N.;Dayana, K.;Rusop, M.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.4
    • /
    • pp.165-171
    • /
    • 2013
  • Nanostructured pure a-C and nitrogen doped a-C: N thin films with small particle size of, ~50 nm were obtained by Aerosol-assisted CVD method from the natural precursor camphor oil. Five samples were prepared for the a-C and a-C: N respectively, with the deposition temperatures ranging from $400^{\circ}C$ to $600^{\circ}C$. At high temperature, the AFM clarifies an even smoother image, due to the increase of the energetic carbon ion bombardment at the surface of the thin film. An ohmic contact was acquired from the current-voltage solar simulator characterization. The higher conductivity of a-C: N, of ${\sim}{\times}10^{-2}Scm^{-1}$ is due to the decrease in defects since the spin density gap decrease with the nitrogen addition. Pure a-C exhibit absorption coefficient, ${\alpha}$ of $10^4cm^{-1}$, whereas for a-C:N, ${\alpha}$ is of $10^5cm^{-1}$. The high ${\sigma}$ value of a-C:N is due to the presence of more graphitic component ($sp^2$ carbon bonding) in the carbon films.

The Vertical Growth of CNTs by DC Bias-Assisted PECVD and Their Field Emission Properties. (플라즈마 화학 기상 증착법에서 DC bias가 인가된 탄소나노튜브의 수직성장과 전계방출 특성)

  • 정성회;김광식;장건익;류호진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.4
    • /
    • pp.367-372
    • /
    • 2002
  • The vertically well-aligned carbon nanotubes(CNTs) were successfully grown on Ni coated silicon wafer substrate by DC bias-assisted PECVD(Plasma Enhanced Chemical Vapor Deposition). As a catalyst, Ni thin film of thickness ranging from 15~30nm was prepared by electron beam evaporator method. In order to find the optimum growth condition, the type of gas mixture such as $C_2H_2-NH_3$ was systematically investigated by adjusting the gas mixing ratio at $570^{\circ}C$ under 0.4Torr. The diameter of the grown CNTs was 40~200nm and the diameter of the CNTs increased with increasing the Ni particles size. TEM images clearly showed carbon nanotubes to be multiwalled. The measured turn-on field was $3.9V/\mu\textrm{m}$ and an emission current of $1.4{\times}10^4A/\textrm{cm}^2$ was $7V/\mu\textrm{m}$. The CNTs grown by bias-assisted PECVD was able to demonstrate high quality in terms of vertical alignment, crystallization of graphite and the processing technique at low temperature of $570^{\circ}C$ and this can be applied for the emitter tip of FEDs.

Electrophoretic Deposition Technique by Vertical Lateral Assisted Field (측면수직보조전계에 의한 전기영동전착 기술)

  • Soh, Dae-Wha;Jeon, Yong-Woo;Park, Jeung-Cheul;Fan, Zhanguo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05b
    • /
    • pp.82-85
    • /
    • 2003
  • This dissertation describes an optimization method for fabricating thick films with superconducting YBCO powders by electrophoresis technique. The lateral alternating applied voltage caused to shake the superconducting powder vertically to the deposition field during the process of the oriented deposition so that it was deposited along the c-axis on the silver tape with shaky-aligned EPD. As the result, the optimized thin film fabrication method was obtained to get more dense and uniform surface morphology as well as the improved critical current density. For commercial utilization and efficiency, in this dissertation, alternating voltage of 25-120 V/cm in frequency of 60Hz was proposed to apply it as a subsidiary source for shaky-flow deposition so that the fabricated thin film showed uniform surface morphology with less voids and cracks and $T_{c.zero}$ of 90 K and the critical current density of $3419A/cm^2$.

  • PDF

Epitaxial Growth of $Y_2O_3$ films by Ion Beam Assisted Deposition

  • Whang, C.N.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.26-26
    • /
    • 2000
  • High quality epitaxial Y2O3 thin films were prepared on Si(111) and (001) substaretes by using ion beam assisted deposition. As a substrate, clean and chemically oxidized Si wafers were used and the effects of surface state on the film crystallinity were investigated. The crystalline quality of the films were estimated by x-ray scattering, rutherford backscattering spectroscopy/channeling, and high-resolution transmission electron microscopy (HRTEM). The interaction between Y and Si atoms interfere the nucleation of Y2O3 at the initial growth stage, it could be suppressed by the interface SiO2 layer. Therefore, SiO2 layer of the 4-6 layers, which have been known for hindering the crystal growth, could rather enhance the nucleation of the Y2O3 , and the high quality epitaxial film could be grown successfully. Electrical properties of Y2O3 films on Si(001) were measured by C-V and I-V, which revealed that the oxide trap charge density of the film was 1.8$\times$10-8C/$\textrm{cm}^2$ and the breakdown field strength was about 10MV/cm.

  • PDF

Development of Plasma Assisted Burner for Regeneration of Diesel Particulate Filter (매연여과장치 재생을 위한 플라즈마 응용 버너 개발)

  • Cha, Min-Suk;Lee, Dae-Hoon;Kim, Kwan-Tae;Lee, Jae-Ok;Song, Young-Hoon;Kim, Seock-Joon
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.4
    • /
    • pp.8-13
    • /
    • 2007
  • Plasma assisted combustion is an old subject for the combustion society, but recently, the subject is refocused partly because techniques for non-thermal plasmas are progressed significantly, and partly because there are lots of applications which need to be overcome by a new reaction technology. In the present study, we have developed plasma assisted burner (plasma burner), which can be used as a heating source in a diesel particulate filter system. The burner can burn 20-60 cc/min of diesel fuel with 50 lpm of fresh air in an exhaust pipe of 2.0 liter diesel engine. Using 20 cc/min of diesel fuel, an exhaust temperature for 2.0 liter diesel engine can be raised up to around $600^{\circ}C$ for a wide range of engine speed (idle-3,000 rpm). The characteristics of the plasma burner are reported, and the possible operating mechanism of it will be discussed based on the effects of an electric field and a plasma on flames.

  • PDF

Development of Plasma Assisted Burner for Regeneration of Diesel Particulate Filter (플라즈마를 이용한 매연여과장치 재생용 버너 개발)

  • Cha, Min-Suk;Lee, Dae-Hoon;Kim, Kwan-Tae;Lee, Jae-Ok;Song, Young-Hoon;Kim, Seock-Joon
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.202-206
    • /
    • 2007
  • Plasma assisted combustion is an old subject for the combustion society, but recently, the subject is refocused partly because techniques for non-thermal plasmas are progressed significantly, and partly because there are lots of applications which need to be overcome by a new reaction technology. In the present study, we have developed plasma assisted burner (plasma burner), which can be used as a heating source in a diesel particulate filter system. The burner can bum 20 - 60 cc/min of diesel fuel with 50 lpm of fresh air in an exhaust pipe of 2.0 liter diesel engine. Using 20 cc/min of diesel fuel, an exhaust temperature for 2.0 liter disel engine can be raised up to around $600^{\circ}C$ for the range of engine speeds is idle - 3,000 rpm. The characteristics of the plasma burner are reported, and the possible operating mechanism of it will be discussed based on the effects of an electric field and a plasma on flames.

  • PDF

Growth of Copper Oxide Thin Films Deposited by Ultrasonic-Assisted Spray Pyrolysis Deposition Method (초음파 분무 열분해법을 이용한 구리산화물 박막 성장)

  • Han, In Sub;Park, Il-Kyu
    • Korean Journal of Materials Research
    • /
    • v.28 no.9
    • /
    • pp.516-521
    • /
    • 2018
  • Copper oxide thin films are deposited using an ultrasonic-assisted spray pyrolysis deposition (SPD) system. To investigate the effect of substrate temperature and incorporation of a chelating agent on the growth of copper oxide thin films, the structural and optical properites of the copper oxide thin films are analyzed by X-ray diffraction (XRD), field-emssion scanning electron microscopy (FE-SEM), and UV-Vis spectrophotometry. At a temperature of less than $350^{\circ}C$, three-dimensional structures consisting of cube-shaped $Cu_2O$ are formed, while spherical small particles of the CuO phase are formed at a temperature higher than $400^{\circ}C$ due to a Volmer-Weber growth mode on the silicon substrate. As a chelating agent was added to the source solutions, two-dimensional $Cu_2O$ thin films are preferentially deposited at a temperature less than $300^{\circ}C$, and the CuO thin film is formed even at a temperature less than $350^{\circ}C$. Therefore the structure and crystalline phase of the copper oxide is shown to be controllable.