DOI QR코드

DOI QR Code

Growth of Copper Oxide Thin Films Deposited by Ultrasonic-Assisted Spray Pyrolysis Deposition Method

초음파 분무 열분해법을 이용한 구리산화물 박막 성장

  • Han, In Sub (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Park, Il-Kyu (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 한인섭 (서울과학기술대학교 신소재공학과) ;
  • 박일규 (서울과학기술대학교 신소재공학과)
  • Received : 2018.08.17
  • Accepted : 2018.09.03
  • Published : 2018.09.27

Abstract

Copper oxide thin films are deposited using an ultrasonic-assisted spray pyrolysis deposition (SPD) system. To investigate the effect of substrate temperature and incorporation of a chelating agent on the growth of copper oxide thin films, the structural and optical properites of the copper oxide thin films are analyzed by X-ray diffraction (XRD), field-emssion scanning electron microscopy (FE-SEM), and UV-Vis spectrophotometry. At a temperature of less than $350^{\circ}C$, three-dimensional structures consisting of cube-shaped $Cu_2O$ are formed, while spherical small particles of the CuO phase are formed at a temperature higher than $400^{\circ}C$ due to a Volmer-Weber growth mode on the silicon substrate. As a chelating agent was added to the source solutions, two-dimensional $Cu_2O$ thin films are preferentially deposited at a temperature less than $300^{\circ}C$, and the CuO thin film is formed even at a temperature less than $350^{\circ}C$. Therefore the structure and crystalline phase of the copper oxide is shown to be controllable.

Keywords

References

  1. D. K. Cheon, K. J. Ahn and W. Lee, Korean J. Mater. Res., 27, 69 (2017). https://doi.org/10.3740/MRSK.2017.27.2.69
  2. J. H. Lee, S. J. Heo, J. I. Youn, Y. J. Kim, I. K. Kim, K. W. Jang and H. J. Oh, Korean J. Mater. Res., 27, 569 (2017). https://doi.org/10.3740/MRSK.2017.27.10.569
  3. A. Chen, H. Long, X. Li, Y. Li, G. Yang and P. Lu, Vacuum, 83, 927 (2009). https://doi.org/10.1016/j.vacuum.2008.10.003
  4. G. Papadimitropoulos, N. Vourdas, V. Em. Vamvakas and D. Davazoglou, Thin Solid Films, 515, 2428 (2006). https://doi.org/10.1016/j.tsf.2006.06.002
  5. A. S. Zoolfakar, R. A. Rani, A. J. Morfa, A. P. O'Mullane and K. Kalantar-zadeh, J. Mater. Chem. C, 2, 5247 (2014). https://doi.org/10.1039/C4TC00345D
  6. B. K. Meyer, A. Polity, D. Reppin, M. Becker, P. Hering, P. J. Klar, Th Sander, C. Reindl, J. Benz, M. Eickhoff, C. Heiliger, M. Heinemann, J. Blasing, A. Krost, S. Shokovets, C. Muller and C. Ronning, Phys. Status Solidi B, 249, 1487 (2012). https://doi.org/10.1002/pssb.201248128
  7. R. Wick and S. D. Tilley, J. Phys. Chem. C., 119, 26243 (2015). https://doi.org/10.1021/acs.jpcc.5b08397
  8. J. Luo, L. Steier, M.-K. Son, M. Schreier, M. T. Mayer and M. Gratzel, Nano Lett., 16, 1848 (2016). https://doi.org/10.1021/acs.nanolett.5b04929
  9. Y. Yang, D. Xu, Q. Wu and P. Diao, Sci. Rep., 6, 35158 (2016). https://doi.org/10.1038/srep35158
  10. M. A. Hossain, R. Al-Gaashani, H. Hamoudi, M. J. Al Marri, I. A. Hussein, A. Belaidi, B. A. Merzougui, F. H. Alharbi and N. Tabet, Mater. Sci. Semicond. Process., 63, 203 (2017). https://doi.org/10.1016/j.mssp.2017.02.012
  11. S. J. Park, H. Kim and D. J. Kim, Korean J. Mater. Res., 24, 19 (2014). https://doi.org/10.3740/MRSK.2014.24.1.19
  12. C. E. Knapp and C. J. Carmalt, Chem. Soc. Rev., 45, 1036 (2016). https://doi.org/10.1039/C5CS00651A
  13. R. J. Jaccodine, J. Electrochem. Soc., 110, 524 (1963). https://doi.org/10.1149/1.2425806
  14. A. Eskandari, P. Sangpour and M. R. Vaezi, Mater. Chem. Phys., 147, 1204 (2014). https://doi.org/10.1016/j.matchemphys.2014.07.008
  15. Y. C. Zhang, J. Y. Tang, G. L. Wang, M. Zhang and X. Y. Hu, J. Crystal Growth, 294, 278 (2006). https://doi.org/10.1016/j.jcrysgro.2006.06.038
  16. A. Y. Oral, E. Mensur, M. H. Aslan and E. Basaran, Mater. Chem. Phys., 83, 140 (2004). https://doi.org/10.1016/j.matchemphys.2003.09.015
  17. J. C. Tauc, Optical Properties of Solids, North-Holland, Amsterdam (1972).
  18. M. Y. Lee, S. H. Kim and I. K. Park, Physica B, 500, 4 (2016). https://doi.org/10.1016/j.physb.2016.07.025
  19. T. Ikenoue, S. Sakamoto and Y. Inui, Jpn. J. Appl. Phys., 53, 05FF06 (2014). https://doi.org/10.7567/JJAP.53.05FF06
  20. K. Chen, C. J. Chiang and D. Ray, Mater. Lett., 95, 172 (2013). https://doi.org/10.1016/j.matlet.2012.12.100