• Title/Summary/Keyword: A. catenella

Search Result 36, Processing Time 0.021 seconds

Species Diversity of the Dinoflagellate Genus Alexandrium in the Coastal Waters of Korea during Summer 2013 (2013년 하계 국내 연안에서 출현하는 Alexandrium 속 와편모류의 종 다양성)

  • KIM, JAE SEONG;PARK, KYUNG WOO;YOUN, SEOK HYUN;LIM, WEOL AE;YOO, YEONG DU;SEONG, KEYONG AH;YIH, WON HO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.21 no.4
    • /
    • pp.158-170
    • /
    • 2016
  • We investigated the occurrence of the dinoflagellate genus Alexandrium in the nineteen Korean coastal sites from July to October 2013. Alexandrium-like planktonic cells were microscopically observed only in four out of the 19 sampling sites. From the samples containing Alexandrium-like cells 22 clonal cultures of Alexandrium species were established by single cell or single chain isolation method. Taxonomic identity of the 4 different strains ascertained by the robust analyses of morphological and molecular genetic characteristics were confirmed to be A. catenella, A. affine, A. fraterculus and an unidentified Alexandrium sp. for which strain WEB-Alex-01 was assigned. It was ascertained that in spite of hot summer diverse Alexandrium species attaining up to four were distributed in the study area, in contrast with the long empirical recognition that the emergence of Alexandrium species is restricted to cooler seasons like spring or autumn in Korean coastal waters. Morphology and genetic characteristics of Alexandrium sp. strain WEB-Alex-01 are different from any other previously reported Alexandrium species from Korean seas, which implies that further studies on taxonomic, physiological, ecological and toxicological properties of the newly recorded Alexandrium species are needed.

Sequence analysis of partial LSU rDNA of three Alexandrium species (Dinophyceae) hitherto unreported

  • Kim, Keun-Yong;Makoto Yoshida;Kim, Chang-Hoon
    • Proceedings of the Korean Aquaculture Society Conference
    • /
    • 2003.10a
    • /
    • pp.35-35
    • /
    • 2003
  • We, for the first time, reported molecular sequences of large subunit ribosomal DNA Dl-D3 region of A. hiranoi, A. leei and A. satoanum hitherto unreported. In addition, this study presented the full-length sequences of A. affine, A. fraterculus, A. catenella and A. tamarense occurring in Korean coastal waters. In total, 17 Alexandrium morphospecies were subjected to the phylogenetic analysis using the Maximum-likelihood (ML) method. The alignment result of sequences of A. hiranoi and A. pseudogonyaulax showed that there were only two substitutions without length heterogeneity implying their genetic affiliation. In ML tree, A. leei formed a deeply diverging branch probably because of the accelerated evolutionary rate, and its phylogenetic position was so ambiguous to resolve the phylogenetic relationship to the residual taxa. An A. satoanum culture showing morphological variation in the sulcal plate formed an independent divergent branch with consistent sister relationship to A. hiranoi/A. pseudogonyaulax clade supported by the high posterior probability (PP) value. Blast search in GenBank showed the sequence data of A. affine, A. fraterculus, A. catenella and A. tamarense corresponded to their morphological species designation. In ML tree, Alexandrium species were commonly split into four main clades. The inter-clade relationships were not clear and usually supported by the week PP values. In general, the sulcal plate of Alexandrium species seemed to reflect the true phylogeny at the main clade level, and the connection between the 1 and the apical pore complex seemed to reflect the phylogeny at the subclade level.

  • PDF

Rapid and exact molecular identification of the PSP (paralytic shellfish poisoning) producing dinoflagellate genus Alexandrium

  • Kim, Choong-jae;Kim, Sook-Yang;Kim, Kui-Young;Kang, Young-Sil;Kim, Hak-Gyoon;Kim, Chang-Hoon
    • Proceedings of the Korean Aquaculture Society Conference
    • /
    • 2003.10a
    • /
    • pp.132-133
    • /
    • 2003
  • The marine dinoflagellate genus Alexandrium comprise PSP producing A. acatenella, A. angustitabuzatum, A. catenella, A. fundyense, A. minutum, A. ostenfezdii, A. tamiyavanichii and A. tamarense. In monitoring toxic Alexandrium, rapid and exact species identification is one of the significant prerequisite work, however we have suffered confusion of species definition in Alexandrium. To surmount this problem, we chose DNA probing, which has long been used as an alternative for conventional identification methods, primarily relying on morphological approaches using microscope in microbial field. Oligonucleotide DNA probes targeting rRNA or rDNA have been commonly used in diverse studies to detect and enumerate cells concerned as a culture-indetendent powerful tool. Despite of the massive literature on the HAB species containing Alexandrium, application of DNA probing for species identification and detection has been limited to a few documents. DNA probes of toxic A. tamarense, A. catenella and A. tamiyavanichii, and non-toxic A. affine, A. fraterculus, A. insuetum and A. pseudogonyaulax were designed from LSU rDNA D1-D2, and applied to whole cell-FISH. Each DNA probes reacted only the targeted Alexandrium cells with very high species-specificity within Alexandrium. The probes could detect each targeted cells obtained from the natural sea water samples without cross-reactivity. Labeling intensity varied in the growth stage, this showed that the contents of probe-targeted cellular rRNA decreased with reduced growth rate. Double probe TAMID2S1 achieved approximately two times higher fluorescent intensity than that with single probe TAMID2. This double probe did not cross-react with any kinds of microorganisms in the natural sea waters. Therefore we can say that in whole-cell FISH procedure this double DNA probe successfully labeled targeted A. tamiyavanichii without cross-reaction with congeners and diverse natural bio-communities.

  • PDF

Marine Macro-algae of Orissa, East Coast of India

  • Rath, Jnanendra;Adhikary, Siba Prasad
    • ALGAE
    • /
    • v.21 no.1
    • /
    • pp.49-59
    • /
    • 2006
  • A total of twenty one species of marine macro-algae were reported from 460 kms long Orissa coast in the east coast of India. Of these 9 species belongs to Chlorophyta, 2 to Phaeophyta and 10 to Rhodophyta. The low species richness compared with southern and western coasts of India was due to lack of rocky and/or coral substratum. Enteromorpha usneoides and Gelidium divaricatum were reported first from India. Enteromorpha linza, E. clathrata, Colpomenia sinuosa, Dictyota dichotoma, Catenella impudica, Compsopogon aeruginosus and Grateloupia lithophila were the new records for Orissa coast.

Morphological Identification of Alexandrium tamarense and A. catenella (Dinophyceae) from Korean Coastal Waters

  • Kim, Keunyong;Kim, Chang-Hoon
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.05a
    • /
    • pp.271-272
    • /
    • 2001
  • Taxonomic studies of HAB species have been hindered by paucity of informative morphology, phenotypic variation under different environmental ifluences, lack of knowledge on their sexual reproduction. In Korea, two PSP incidents resulting in human deaths after eating contaminated mussels broke out in 1985 (Chang et al.1987 and 1996 (Lee et al, 1997). (omitted)

  • PDF

Dinoflagellate Cyst Assemblages in the Surface Sediments from the Northwestern East China Sea

  • Cho Hyun-Jin;Matsuoka Kazumi;Lee Joon-Baek;Moon Chang-Ho
    • Fisheries and Aquatic Sciences
    • /
    • v.4 no.3
    • /
    • pp.120-129
    • /
    • 2001
  • Thirty-six dinoflagellate cysts, representing 15 genera were identified in the surface sediments obtained from the northwestern East China Sea. Three cyst morphotypes found in this survey have not previously been described in the East China Sea and adjacent waters: Seleno­pemphix sp. 2, Selenopemphix sp. 3 and Trinovantedinium sp. 1. In the northwestern East China Sea, Operculodinium centrocarpum, Spiniferites bulloideus and ellipsoidal cysts of Alexandrium were commonly observed. Moreover, it was recognized that the ellipsoidal cysts of Alexandrium, whose motile cells of A tamarense and/or A catenella are responsible to paralytic shellfish poisoning, distributed not only restricted to the coastal areas but also to the offshore stations far from the Changjiang River mouth.

  • PDF

Alexandrium pacificum(Group IV) isolated from Jangmok Bay, Korea: Morphology, phylogeny, and effects of temperature, salinity, and nutrient levels on growth (장목만에서 분리한 유독 와편모조류 Alexandrium pacificum(Group IV): 형태, 계통 분류와 온도, 염분 및 영양염 농도 차이에 따른 성장 변화)

  • Kyong Ha Han;Joo Yeon Youn;Kyeong Yoon Kwak;Zhun Li;Wonchoel Lee;Hyeon Ho Shin
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.3
    • /
    • pp.290-300
    • /
    • 2022
  • A strain of Alexandrium species was established by isolating cells from Jangmok Bay, Korea. Its morphology and molecular phylogeny based on LSU rRNA gene sequences were examined. In addition, growth responses of this Alexandrium species to changes in temperature, salinity, and nutrient concentrations were investigated. This Alexandrium species from Jangmok Bay had a ventral pore on the 1', which was morphologically consistent with previously described Alexandrium tamarense and A. catenella. Phylogenetic analyses revealed that this isolate was assigned to A. pacificum (Group IV) within A. tamarense species complex. In growth experiments, relatively high growth rates and cell densities of A. pacificum (Group IV) were observed at 15℃ and 20℃. This species also grew under a wide range of salinity. This indicates that this Korean isolate of A. pacificum (Group IV) is a stenothermic and euryhaline species. In growth responses to changes in nutrient levels, enhanced growth rates and cell densities of A. pacificum(Group IV) were observed with additions of nitrate and phosphate. In particular, rapid uptakes of phosphate by A. pacificum (Group IV) were observed in experimental treatments, indicating that the increase in phosphate concentration could stimulate the growth of A. pacificum(Group IV).

Application of Species-specific DNA Probe to Field Samples of Alexandrium tamarense (Lebour) Balech (자연 시료로부터 Alexandrium tamarense을 위한 종 특이적 DNA탐침의 응용)

  • Cho, Eun-Seob;Kim, Gi-Young;Park, Hyung-Sik;Kim, Hak-Gyoon;Moon, Sung-Ki;Lee, Jae-Dong
    • Journal of Life Science
    • /
    • v.12 no.3
    • /
    • pp.250-255
    • /
    • 2002
  • Fluorescent species-specific DNA probe (AT1) of toxic dinoflagellate Arexandrium tamarense was tested on several other species, on comparison of binding activity at different preservatives for fixation of the cells, at different culture age and estimation of cell density by light microscope or epifluorescent microscope using whole cell hybridization. Th AT1 probe specifically bound to Alexandrium tamarense, whereas it did not bind to other phytoplankton, in particular Alexandrium catenella, morphologically similar to Alexandrium tamarense, could not react to AT1 probe. When cells were fixed with all three preservatives, labeling cells of Alexandrium tamarense emitted strong fluorescent signal intensity. In addition, regardless culture days, binding activity with AT1 probe was strong. The tell densities estimated by epifluorescent microscope were than those estimated by light microscope. The enumeration and identifying of Arexandriurn tamarense using DNA probe method will be contributed to a new biotoxin monitoring and prediction system in field.

Evaluation of Construction Operation and Design Properties of CLSM for Corrugated Pipe in Underground (파형강관을 이용한 지하매설물용 뒤채움재 설계 및 시공성 평가)

  • Lee Kwan-Ho;Park Jae-Heon
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.63-74
    • /
    • 2006
  • During the construction of circular underground pipe, the non-proper compaction along the pipe and the decrease of compaction efficiency have been the main problems to induce the failure of underground pipe or facility. The use of CLSM (controlled low strength materials) should be one of the possible applications to overcome those problems. In this research, the full-scaled field test and the numeric analysis using PENTAGON-3D FEM program were carried out for three different cases on the change of backfill materials, including the common sand, the soil from construction site, and the CLSM. From the full-scaled test in field, the use of in-situ CLSM as backfill materials reduced the vertical and lateral deformation of the pipe, as well as the deformation of the ground surface. The main reason for reducing the deformation would be the characteristics of the CLSM, especially self-leveling and self-hardening properties. The measured earth pressure at the surround of the corrugated pipe using the CLSM backfills was the smaller than the other cases, and the absolute value was almost zero. Judging from the full-scaled field test and FEM analysis, the use of CLSM as backfill materials should be one of the best choices reducing the failure of the underground pipes.

  • PDF

Molecular Identification of the Toxic Alexandrium tamiyavanichii (Dinophyceae) by the Whole-cell FISH Method

  • Kim Choong-Jae;Yoshimatsu Sada-Akfi;Sako Yoshihiko;Kim Chang-Hoon
    • Fisheries and Aquatic Sciences
    • /
    • v.7 no.4
    • /
    • pp.175-183
    • /
    • 2004
  • The dinoflagellate Alexandrium tamiyavanichii Balech, a producer of toxins causing paralytic shellfish poisoning (PSP), has recently been considered as one of main organisms responsible for toxication of shellfish in Japan. In this study, A. tamiyavanichii was subjected to a molecular phylogenetic analysis inferred from 28S rDNA D1-D2 sequences and a species-specific LSU rRNA-targeted oligonucleotide DNA probe was designed to identify A. tamiyavanichii using the whole cell-FISH (fluorescence in situ hybridization). The sequences of the 28S rDNA D1-D2 region of A. tamiyavanichii showed no difference from A. cohorticular AF1746l4 (present name A. tamiyavanichii) and formed a distinct clade from the 'tamarensis species complex'. The probe, TAMID2, reacted specifically with A. tamiyavanichii cultured cells, without any cross-reaction with other species belonging to the same genus, including A. tamarense, A. catenella, A. affine, A. fraterculus, A. insuetum and A. pseudogonyaulax. In a test of cross-reactivity with a field sample, TAMID2 reacted consistently with only A. tamiyavanichii, indicating that the present protocol involving the TAMID2 probe might be useful for detecting toxic A. tamiyavanichii in a simple and rapid manner.