Rapid and exact molecular identification of the PSP (paralytic shellfish poisoning) producing dinoflagellate genus Alexandrium

  • Published : 2003.10.01

Abstract

The marine dinoflagellate genus Alexandrium comprise PSP producing A. acatenella, A. angustitabuzatum, A. catenella, A. fundyense, A. minutum, A. ostenfezdii, A. tamiyavanichii and A. tamarense. In monitoring toxic Alexandrium, rapid and exact species identification is one of the significant prerequisite work, however we have suffered confusion of species definition in Alexandrium. To surmount this problem, we chose DNA probing, which has long been used as an alternative for conventional identification methods, primarily relying on morphological approaches using microscope in microbial field. Oligonucleotide DNA probes targeting rRNA or rDNA have been commonly used in diverse studies to detect and enumerate cells concerned as a culture-indetendent powerful tool. Despite of the massive literature on the HAB species containing Alexandrium, application of DNA probing for species identification and detection has been limited to a few documents. DNA probes of toxic A. tamarense, A. catenella and A. tamiyavanichii, and non-toxic A. affine, A. fraterculus, A. insuetum and A. pseudogonyaulax were designed from LSU rDNA D1-D2, and applied to whole cell-FISH. Each DNA probes reacted only the targeted Alexandrium cells with very high species-specificity within Alexandrium. The probes could detect each targeted cells obtained from the natural sea water samples without cross-reactivity. Labeling intensity varied in the growth stage, this showed that the contents of probe-targeted cellular rRNA decreased with reduced growth rate. Double probe TAMID2S1 achieved approximately two times higher fluorescent intensity than that with single probe TAMID2. This double probe did not cross-react with any kinds of microorganisms in the natural sea waters. Therefore we can say that in whole-cell FISH procedure this double DNA probe successfully labeled targeted A. tamiyavanichii without cross-reaction with congeners and diverse natural bio-communities.

Keywords