• 제목/요약/키워드: A-monotone mappings

검색결과 64건 처리시간 0.018초

PERTURBED THREE-STEP ITERATIVE PROCESSES WITH ERRORS FOR GENERAL STRONGLY NONLINEAR QUASIVARIATIONAL INEQUALITIES

  • ZHAO YALI;XIA ZUNQUAN;LIU ZEQING;KANG SHIN MIN
    • Journal of applied mathematics & informatics
    • /
    • 제17권1_2_3호
    • /
    • pp.171-183
    • /
    • 2005
  • In this paper, we introduce and study a class of general strongly nonlinear quasivariational inequalities in Hilbert spaces. We prove the existence and uniqueness of solution and convergence of the perturbed the three-step iterative sequences with errors for this kind of general strongly nonlinear quasivariational inquality problems involving relaxed Lipschitz, relaxed monotone, and strongly monotone mappings. Our results extend, improve, and unify many known results due to Liu-Ume-Kang, Kim-Kyung, Zeng and others.

ERROR BOUNDS FOR NONLINEAR MIXED VARIATIONAL-HEMIVARIATIONAL INEQUALITY PROBLEMS

  • A. A. H. Ahmadini;Salahuddin;J. K. Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • 제29권1호
    • /
    • pp.15-33
    • /
    • 2024
  • In this article, we considered a class of nonlinear variational hemivariational inequality problems and investigated a gap function and regularized gap function for the problems. We discussed the global error bounds for such inequalities in terms of gap function and regularized gap functions by utilizing the Clarke generalized gradient, relaxed monotonicity, and relaxed Lipschitz continuous mappings. Finally, as applications, we addressed an application to non-stationary non-smooth semi-permeability problems.

UTILIZING ISOTONE MAPPINGS UNDER GERAGHTY-TYPE CONTRACTION TO PROVE MULTIDIMENSIONAL FIXED POINT THEOREMS WITH APPLICATION

  • Deshpande, Bhavana;Handa, Amrish
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제25권4호
    • /
    • pp.279-295
    • /
    • 2018
  • We study the existence and uniqueness of fixed point for isotone mappings of any number of arguments under Geraghty-type contraction on a complete metric space endowed with a partial order. As an application of our result we study the existence and uniqueness of the solution to a nonlinear Fredholm integral equation. Our results generalize, extend and unify several classical and very recent related results in the literature in metric spaces.

GAP FUNCTIONS AND ERROR BOUNDS FOR GENERAL SET-VALUED NONLINEAR VARIATIONAL-HEMIVARIATIONAL INEQUALITIES

  • Jong Kyu Kim;A. A. H. Ahmadini;Salahuddin
    • Nonlinear Functional Analysis and Applications
    • /
    • 제29권3호
    • /
    • pp.867-883
    • /
    • 2024
  • The objective of this article is to study the general set-valued nonlinear variational-hemivariational inequalities and investigate the gap function, regularized gap function and Moreau-Yosida type regularized gap functions for the general set-valued nonlinear variational-hemivariational inequalities, and also discuss the error bounds for such inequalities using the characteristic of the Clarke generalized gradient, locally Lipschitz continuity, inverse strong monotonicity and Hausdorff Lipschitz continuous mappings.

GENERAL NONCONVEX SPLIT VARIATIONAL INEQUALITY PROBLEMS

  • Kim, Jong Kyu;Salahuddin, Salahuddin;Lim, Won Hee
    • Korean Journal of Mathematics
    • /
    • 제25권4호
    • /
    • pp.469-481
    • /
    • 2017
  • In this paper, we established a general nonconvex split variational inequality problem, this is, an extension of general convex split variational inequality problems in two different Hilbert spaces. By using the concepts of prox-regularity, we proved the convergence of the iterative schemes for the general nonconvex split variational inequality problems. Further, we also discussed the iterative method for the general convex split variational inequality problems.

HYBRID INERTIAL CONTRACTION PROJECTION METHODS EXTENDED TO VARIATIONAL INEQUALITY PROBLEMS

  • Truong, N.D.;Kim, J.K.;Anh, T.H.H.
    • Nonlinear Functional Analysis and Applications
    • /
    • 제27권1호
    • /
    • pp.203-221
    • /
    • 2022
  • In this paper, we introduce new hybrid inertial contraction projection algorithms for solving variational inequality problems over the intersection of the fixed point sets of demicontractive mappings in a real Hilbert space. The proposed algorithms are based on the hybrid steepest-descent method for variational inequality problems and the inertial techniques for finding fixed points of nonexpansive mappings. Strong convergence of the iterative algorithms is proved. Several fundamental experiments are provided to illustrate computational efficiency of the given algorithm and comparison with other known algorithms

REGULARIZED PENALTY METHOD FOR NON-STATIONARY SET VALUED EQUILIBRIUM PROBLEMS IN BANACH SPACES

  • Salahuddin, Salahuddin
    • Korean Journal of Mathematics
    • /
    • 제25권2호
    • /
    • pp.147-162
    • /
    • 2017
  • In this research works, we consider the general regularized penalty method for non-stationary set valued equilibrium problem in a Banach space. We define weak coercivity conditions and show that the weak and strong convergence problems of the regularized penalty method.

GENERALIZED NONLINEAR MULTIVALUED MIXED QUASI-VARIATIONAL-LIKE INEQUALITIES

  • Lee, Byung-Soo;Khan M. Firdosh;Salahuddin Salahuddin
    • 대한수학회논문집
    • /
    • 제21권4호
    • /
    • pp.689-700
    • /
    • 2006
  • In this paper, we introduce a new class of generalized nonlinear multivalued mixed quasi-variational-like inequalities and prove the existence and uniqueness of solutions for the class of generalized nonlinear multivalued mixed quasi-variational-like inequalities in reflexive Banach spaces using Fan-KKM Theorem.

TWO STEP ALGORITHM FOR SOLVING REGULARIZED GENERALIZED MIXED VARIATIONAL INEQUALITY PROBLEM

  • Kazmi, Kaleem Raza;Khan, Faizan Ahmad;Shahza, Mohammad
    • 대한수학회보
    • /
    • 제47권4호
    • /
    • pp.675-685
    • /
    • 2010
  • In this paper, we consider a new class of regularized (nonconvex) generalized mixed variational inequality problems in real Hilbert space. We give the concepts of partially relaxed strongly mixed monotone and partially relaxed strongly $\theta$-pseudomonotone mappings, which are extension of the concepts given by Xia and Ding [19], Noor [13] and Kazmi et al. [9]. Further we use the auxiliary principle technique to suggest a two-step iterative algorithm for solving regularized (nonconvex) generalized mixed variational inequality problem. We prove that the convergence of the iterative algorithm requires only the continuity, partially relaxed strongly mixed monotonicity and partially relaxed strongly $\theta$-pseudomonotonicity. The theorems presented in this paper represent improvement and generalization of the previously known results for solving equilibrium problems and variational inequality problems involving the nonconvex (convex) sets, see for example Noor [13], Pang et al. [14], and Xia and Ding [19].

A VISCOSITY APPROXIMATIVE METHOD TO CES$\`{A}$RO MEANS FOR SOLVING A COMMON ELEMENT OF MIXED EQUILIBRIUM, VARIATIONAL INEQUALITIES AND FIXED POINT PROBLEMS

  • Jitpeera, Thanyarat;Katchang, Phayap;Kumam, Poom
    • Journal of applied mathematics & informatics
    • /
    • 제29권1_2호
    • /
    • pp.227-245
    • /
    • 2011
  • In this paper, we introduce a new iterative method for finding a common element of the set of solutions for mixed equilibrium problem, the set of solutions of the variational inequality for a ${\beta}$inverse-strongly monotone mapping and the set of fixed points of a family of finitely nonexpansive mappings in a real Hilbert space by using the viscosity and Ces$\`{a}$ro mean approximation method. We prove that the sequence converges strongly to a common element of the above three sets under some mind conditions. Our results improve and extend the corresponding results of Kumam and Katchang [A viscosity of extragradient approximation method for finding equilibrium problems, variational inequalities and fixed point problems for nonexpansive mapping, Nonlinear Analysis: Hybrid Systems, 3(2009), 475-86], Peng and Yao [Strong convergence theorems of iterative scheme based on the extragradient method for mixed equilibrium problems and fixed point problems, Mathematical and Computer Modelling, 49(2009), 1816-828], Shimizu and Takahashi [Strong convergence to common fixed points of families of nonexpansive mappings, Journal of Mathematical Analysis and Applications, 211(1) (1997), 71-83] and some authors.