• Title/Summary/Keyword: A-549 cell line

Search Result 203, Processing Time 0.027 seconds

Enhanced Radiosensitivity of Tumor Cells Treated with Vanadate in Vitro (Vanadate 처리가 종양세포의 방사선 감수성에 미치는 영향)

  • Lee, Myung-Za;Lee, Won-Young
    • Radiation Oncology Journal
    • /
    • v.12 no.2
    • /
    • pp.129-141
    • /
    • 1994
  • Intracellular ions which have a major role in cellular function have been reported to affect repair of radiation damage. Recently it has been reported that ouabain sensitizes A549 tumor cellls but not CCL-120 normal cells to radiation. Ouabain inhibits the $Na^+-K^+$-pump rapidly thus it increases intracellular Na concentration, Vanadate which is distributed extensively in almost all living organisms is known to be a $Na^+-K^+$-ATPase inhibitors, This study was performed to see any change in radiosensitivity of tumor cell by vanadate and any role of $Na^+-K^+$ATPase in radiosensitization. Experiments have been carried out by pretreatment with vanadate in human cell line(A549, JMG) and mouse cell line(L1210, spleen). For the cell survival MTT assay was performed for A549 and JMC cells and frypan blue dye exclusion test for L120, and spleen cells. Measurements of $Na^+-K^+$-ATPase activity in control, vanadate treated cell, radiation treated cell (9 Gy for A549 and JMG, 2 Gy for L1201, spleen), and combined $10^{-6}M$ vanadate and radiation treated cells were done. The results were summerized as fellows. 1. L1210 cell was most radiosensitive, and spleen cell and JMG cell were intermediate, and A549 cell was least radiosensitive. 2. Mininum or no cytotoxicity was seen with vanadate below concentration of $10^{-6}M$. 3. In A549 cells there was a little change in radiosensitivity with treatment of vanadate. However radiation sensitization was shown in low dose level of radiation i. e. 2- Gy. In JMG cells no change in radiosensitivity was noted. Both L1210 and spleen cell had radiosensitization but change was greater in tumor cell. 4. $Na^+-K^+$-ATPase activity was inhibited significantly in tumor cell by treatment of vanadate. 5. Radiaiton itself inhibited $Na^+-K^+$-ATPase activity of tumor cell with high $Na^+-K^+$-ATPase concention. Increase in radiosensitivity by vanadate was closely associated with orginal $Na^+-K^+$-ATPase contents. From the above results vanadate had little cytotoxicity and it sensitized tumor cells to radiation. Inhibitory effect of vanadate on $Na^+-K^+$-ATPase activity might be one of the contributing factors for radiosensitization to tumor cells which has greater enzyme activity than that of normal cell. It was suggested vanadate could be used as a potential radiosensitizer for tumor cells.

  • PDF

Cytotoxic compounds against adenocarcinoma alveolar epithelial A549 cells from Paeoniae Radix (작약 뿌리에서 분리한 폐포 선암 세포주 A549에 대한 세포독성 화합물)

  • Ji Won Park;Sang-Eun Shin;Haewon Park;Jeong Ah Kim;Eun-Ju Yang;Kyung-Sik Song
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.272-281
    • /
    • 2023
  • It has been known that Paeoniae Radix (PR) contains monoterpene glycosides showing a variety of biological activities such as anti-spasmodic, anti-inflammatory, anti-viral, neuroprotective, and sedative effects. This study aimed to find the cytotoxic compounds isolated from the dichloromethane (CH2Cl2)- and ethyl acetate-soluble fractions of PR. As results, thirteen compounds (1-13) were isolated and the chemical structures were identified. In addition, the human alveolar adenocarcinoma cell line (A549) was treated with isolated compounds to determine the cytotoxic effect via evaluation of cell viability. The reduction of A549 cell viability was shown as following order; gallic acid (8) > (2S)-naringenin (9) > methyl gallate (10)>6'-O-benzoylpaeoniflorin (7) > palmitic acid (3). Especially, 7 did not show the cytotoxicity in the human lung fibroblast cell line (MRC-5). The effect of 7 on the cell viabilities in A549 and MRC-5 is firstly reported in this study. Further study is required to find out the cytotoxic mechanism and the selectivity for the cancer cells of 7 in detail.

Apoptotic Effects of the B Subunit of Bacterial Cytolethal Distending Toxin on the A549 Lung Cancer Cell Line

  • Yaghoobi, Hajar;Bandehpour, Mojgan;Kazemi, Bahram
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.sup3
    • /
    • pp.299-304
    • /
    • 2016
  • Cytolethal distending toxin (CDT) is a secreted tripartite genotoxin produced by many pathogenic gram-negative bacteria. It is composed of three subunits, CdtA, CdtB and CdtC, and CdtB-associated deoxyribonuclease (DNase) activity is essential for the CDT toxicity. In the present study, to design a novel potentially antitumor drug against lung cancer, the possible mechanisms of cdtB anticancer properties were explored in the A549 human lung adenocarcinoma cell line. A recombinant plasmid pcDNA3.1/cdtB was constructed expressing CdtB of human periodontal bacterium Aggregatibacter actinomycetemcomitans and investigated for toxic properties in A549 cells and possible mechanisms. It was observed that plasmid pcDNA3.1/cdtB caused loss of cell viability, morphologic changes and induction of apoptosis. Furthermore, measurement of caspase activity indicated involvement of an intrinsic pathway of cell apoptosis. Consequently, the recombinant plasmid pcDNA3.1/cdtB may have potential as a new class of therapeutic agent for gene therapy of lung cancer.

A Cyclin-Dependent Kinase Inhibitor, p16^{INK4A}, Induces Apoptosis in The Human Cancer Cells. (Cyclin-dependent Kinase저해 단백질 p16^{INK4A}의 인체 암세포에서의 세포사멸 유도 활성)

  • 김민경;이철훈
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.1
    • /
    • pp.72-77
    • /
    • 2004
  • Previously, we synthesized a novel Cyclin-dependent kinase inhibitor, MCS-5A. Also, we investigated the involvement of cell cycle regulatory events during MCS-5A-mediated apoptosis in HL-60(+p16/-p53) cells with up-regulation of p16 protein expression. In contrast, apoptosis was not observed in A549(-p16/+p53) cells. Therefore we propose that $p16^{INK4A}$ is a key enzyme for inducing apoptosis. In the present studies, we have explored the mechanism of $p16^{INK4A}$ -mediated cytotoxicity and the role of p16.sup INK4A/ overexpression in the induction of apoptosis in human tumor cells. The tumor suppressor gene $p16^{INK4A}$ is known as a cyclin-dependent kinase inhibitor (CKI) and cell cycle regulator. We expressed wild type $p16^{INK4A}$ in pcDNA3.1 vector and then transfected into non-small cell lung cancer (NSCLC) cell expressing different statue of p16$^{INK4A}$, p53 gene〔A549(-p16/+p53), H1299(-p16/-p53) and HeLa(+pl6/+p53) cell line〕. TUNEL assay (including propidium iodide staining following transfection of these cell line with pcDNA3.1-pl6) indicate that p16$^{INK4A}$-mediated cytotoxicity was associated with apoptosis. This is supported by studies demonstrating an induction of caspase 3 cleavage due to the transfection of A549, H1299 and HeLa cells with pcDNA3.1-pl6. These results suggest that p16$^{INK4A}$ has a new function of inducing apoptosis which is not related with the function of tumor suppressor gene p53.

Effects of Liriope muscari Water Extracts on the Cell Death and Inflammatory Cytokine Expression of Poly I:C-treated Lung Carcinoma Cells (맥문동 열수 추출물이 Poly I:C를 처리한 폐암세포주의 사멸 및 염증성 사이토카인 발현에 미치는 영향)

  • Kang, Dayeon;Cho, Namjoon;Renchinkhand, Gereltuya;Lee, Bo-Hee;Kim, Eun-Mi;Nam, Myoung Soo;Kim, Keekwang
    • The Korea Journal of Herbology
    • /
    • v.36 no.1
    • /
    • pp.97-102
    • /
    • 2021
  • Objectives : Virus infection through the respiratory tract causes various inflammatory diseases such as pneumonia, cystic fibrosis, and obstructive pulmonary disease, causing enormous social damage. Therefore, it is very important to develop a treatment and prevention of infectious diseases. In this study, we investigated the effect of water extracts of Liriope muscari (WELM), known to improve lung function, on the inflammatory response of lung carcinoma cell line A549 cells induced by the viral double stranded RNA mimetic Polyinosinic:polycytidylic acid (Poly I:C). Methods : The cell viability by WELM treatment was analyzed using MTS assay in A549 cells. After inducing an inflammatory response to WELM-treated A549 cells with Poly I:C, the degree of apoptosis was confirmed through bright field microscopy. Interferon beta (IFN-β) mRNA expression level in A549 cells was analyzed by quantitative reverse transcription PCR (qRT-PCR). Results : WELM treatment has no significant effect on cell viability of A549 cells. We confirmed that pre-treatment of WELM effectively reduces the Poly I:C-induced apoptotic cell death in A549 cells. In addition, it was confirmed that the mRNA expression level of IFN-β, a pro-inflammatory cytokine increased by Poly I:C treatment, was significantly suppressed by WELM treatment in A549 cells. Conclusions : These results provide the evidence that WELM is effective at inhibiting inflammation on respiratory viral infections and suggest that Liriope muscari might be a valuable natural substance in the prevention and treatment of infectious diseases.

Hypoxia-Inducible Factor 1 Promoter-Induced JAB1 Overexpression Enhances Chemotherapeutic Sensitivity of Lung Cancer Cell Line A549 in an Anoxic Environment

  • Hu, Ming-Dong;Xu, Jian-Cheng;Fan, Ye;Xie, Qi-Chao;Li, Qi;Zhou, Chang-Xi;Mao, Mei;Yang, Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.2115-2120
    • /
    • 2012
  • The presence of lung cancer cells in anoxic zones is a key cause od chemotherapeutic resistance. Thus, it is necessary to enhance the sensitivity of such lung cancer cells. However, loss of efficient gene therapeutic targeting and inefficient objective gene expression in the anoxic zone in lung cancer are dilemmas. In the present study, a eukaryotic expression plasmid pUC57-HRE-JAB1 driven by a hypoxia response elements promoter was constructed and introduced into lung cancer cell line A549. The cells were then exposed to a chemotherapeutic drug cis-diamminedichloroplatinum (C-DDP). qRT-PCR and western blotting were used to determine the mRNA and protein level and flow cytometry to examine the cell cycle and apoptosis of A549 transfected pUC57-HRE-JAB1. The results showed that JAB1 gene in the A549 was overexpressed after the transfection, cell proliferation being arrested in G1 phase and the apoptosis ratio significantly increased. Importantly, introduction of pUC57-HRE-JAB1 significantly increased the chemotherapeutic sensitivity of A549 in an anoxic environment. In conclusion, JAB1 overexpression might provide a novel strategy to overcome chemotherapeutic resistance in lung cancer.

Effects of Rad51 on Survival of A549 Cells

  • Yu, Sha-Sha;Tu, Yi;Xu, Lin-Lin;Tao, Xue-Qin;Xu, Shan;Wang, Shan-Shan;Xiong, Yi-Feng;Mei, Jin-Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.1
    • /
    • pp.175-179
    • /
    • 2015
  • Rad51, a key factor in the homologous recombination pathway for the DNA double-strand break repair, plays a vital role in genesis of non-small-cell lung cancer (NSCLC). In recent years, more and more studies indicate that high expression of Rad51 is of great relevance to resistance of NSCLC to chemotherapeutic agents and ionizing radiation. However, the underlying molecular mechanisms are poorly understood. In this study, we investigated the role of single Rad51 on cell viability in vitro. Our results show that depletion of endogenous Rad51 is sufficient to inhibit the growth of the A549 lung cancer cell line, by accumulating cells in G1 phase and inducing cell death. We conclude that independent Rad51 expression is critical to the survival of A549 cells and can be an independent prognostic factor in NSCLC patients.

Anti-proliferative Effects of Bee Venom through Induction of Bax and Cdk Inhibitor p21WAF1/CIP1 in Human Lung Carcinoma Cells (Bax 및 Cdk inhibitor p21WAF1/CIP1 발현 증가에 의한 bee venom의 A549 인체폐암세포 성장억제)

  • Choi, Yung-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.167-173
    • /
    • 2005
  • To investigate the possible molecular mechanism (s) of bee venom as a candidate of anti-cancer drug, we examined the effects of the compound on the growth of human lung carcinoma cell line A549. Bee venom treatment declined the cell growth and viability of A549 cells in a concentration-dependent manner, which was associated with induction of apoptotic cell death. Bee venom down-regulated the levels of anti-apoptotic genes such as Bcl-2 and Bcl-XS/L, however, the levels of Bax, a pro-apoptotic gene, were up-regulated. Bee venom treatment induced not only tumor suppressor p53 but also cyclin-dependent kinase inhibitor p21WAF1/CIP1 expression in a dose-dependent manner. Furthermore, bee venom treatment induced the down-regulation of telomerase reverse transcriptase mRNA and telomeric repeat binding factor expression of A549 cells, however, the levels of telomerase-associated protein-1 and c-myc were not affected. Taken together, these findings suggest that bee venom-induced inhibition of human lung cancer cell growth is associated with the induction of apoptotic cell death via regulation of several major growth regulatory gene products, and bee venom may have therapeutic potential in human lung cancer.

Metabolic perturbation of an Hsp90 C-domain inhibitor in a lung cancer cell line, A549 studied by NMR-based chemometric analysis

  • Hur, Su-Jung;Lee, Hye-Won;Shin, Ai-Hyang;Park, Sung Jean
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.18 no.1
    • /
    • pp.10-14
    • /
    • 2014
  • Hsp90 is a good drug target molecule that is involved in regulating various signaling pathway in normal cell and the role of Hsp90 is highly emphasized especially in cancer cells. Thus, much efforts for discovery and development of Hsp90 inhibitor have been continued and a few Hsp90 inhibitors targeting the N-terminal ATP binding site are being tested in the clinical trials. There are no metabolic signature molecules that can be used to evaluate the effect of Hsp90 inhibition. We previously found a potential C-domain binder named PPC1 that is a synthetic small molecule. Here we report the metabolomics study to find signature metabolites upon treatment of PPC1 compound in lung cancer cell line, A549 and discuss the potentiality of metabolomic approach for evaluation of hit compounds.

New Insights into 4-Amino-2-tri-fluoromethyl-phenyl Ester Inhibition of Cell Growth and Migration in the A549 Lung Adenocarcinoma Cell Line

  • Wang, Hao;Gui, Shu-Yu;Chen, Fei-Hu;Zhou, Qing;Wang, Yuan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7265-7270
    • /
    • 2013
  • Objective: The present study was designed to investigate the probable mechanisms of synthetic retinoid 4-amino-2-tri-fluoromethyl-phenyl ester (ATPR) inhibition of the proliferation and migration of A549 human lung carcinoma cells. Materials and Methods: After the A549 cells were treated with different concentrations of ATPR or all-trans retinoic acid (ATRA) for 72 h, scratch-wound assays were performed to assess migration. Immunofluorescence was used to determine the distribution of CAV1 and $RXR{\alpha}$, while expression of CAV1, MLCK, MLC, P38, and phosphorylation of MLC and P38 were detected by Western blotting. Results: ATPR could block the migration of A549 cells. The relative migration rate of ML-7 group had significantly decreased compared with control group. In addition, ATPR decreased the expression of a migration related proteins, MLCK, and phosphorylation of MLC and P38. ATPR could also influence the expression of RARs or RXRs. At the same time, CAV1 accumulated at cell membranes, and $RXR{\alpha}$ relocated to the nucleus after ATPR treatment. Conclusions: Caveolae may be implicate in the transport of ATPR to the nucleus. Change in the expression and distribution of $RXR{\alpha}$ may be implicated in ATPR inhibition of A549 cell proliferation. The mechanisms of ATPR reduction in A549 cell migration may be associated with expression of MLCK and phosphorylation of MLC and P38.