• 제목/요약/키워드: A quarter car model

검색결과 55건 처리시간 0.027초

차량 능동 현가장치의 혼합제어기 설계

  • 한기봉;이시복
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.293-298
    • /
    • 1993
  • In ground vehicles, the increasing demand for safety and ride comfort which are trade-off relation, especially at high speeds, has led to the development od actively controlled suspensions. The LQG/LTR controller can be used to design a robust feedback control system that deals with disturbance rejection properties as well as insensitivity to modelling errors and sensor noise. And when the disturbance can not be measured but is limited within a certain frequency range, a bandpass feedback to eliminate the disturbance response can be used. In this paper, hybrid controller cosisted of bandpass feedback controller and LQG/LTR controller is applied to a quarter-car model moving on a randomly profiled road. The random road profile considered as colored noise is shaped from white noise by use of shaping filter. The performance of the hybrid control system is compared with that of an LQG/LTR controlled system.

  • PDF

Fuzzy Skyhook Control of A Semi-active Suspension System

  • Cho Jeong-Mok;Jung Tae-Geun;Joh Joong-Seon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권2호
    • /
    • pp.121-126
    • /
    • 2006
  • In the recent years, the development of computer-controlled suspension dampers and actuators has improved the trade-off between the vehicle handling and ride comfort, and has led to the development of various damper control policies. The skyhook control is an effective control strategy for suppressing vehicle vibration. In this study, a fuzzy skyhook control is proposed and tuned by a genetic algorithm to improve ride comfort. The proposed fuzzy skyhook control is applied to a quarter-car model in order to compare its performance with continuous skyhook suspensions. To obtain optimized fuzzy skyhook control, scale factors and in-out membership functions are tuned by a genetic algorithm. The simulation results show that the fuzzy skyhook control offers more effective suspension performance over the continuous skyhook control.

차량 능동 현가장치의 성능 향상을 위한 복합제어기 설게 (Composite Control of Active Suspension System)

  • 한기봉;이시복
    • 한국정밀공학회지
    • /
    • 제12권7호
    • /
    • pp.74-81
    • /
    • 1995
  • In this paper, a composite controller cosisted of bandpass feedback controller and LQG/LTR controller is applied to a quarter-car model moving on a randomly profiled road. The LQG/LTR controller is used to achieve a design transfer toop. A bandpass feedback controller is adopted to eliminate the response due to the disturbance, which generally can not be measured, confined within an interested frequence range. The random road profile considered as colored noise is shaped from white noise by use of shaping filter. The performance of the composite control system is compared with that of an LQG/LTR control system.

  • PDF

PREVIEW CONTROL OF ACTIVE SUSPENSION WITH INTEGRAL ACTION

  • Youn, I.;Hac, A.
    • International Journal of Automotive Technology
    • /
    • 제7권5호
    • /
    • pp.547-554
    • /
    • 2006
  • This paper is concerned with an optimal control suspension system using the preview information of road input based on a quarter car model. The main purpose of the control is to combine good vibration isolation characteristics with improved attitude control. The optimal control law is derived with the use of calculus of variation, consisting of three parts. The first part is a full state feedback term that includes integral control acting on the suspension deflection to ensure zero steady-state deflection in response to static body forces and ramp road inputs. The second part is a feed-forward term which compensates for the body forces when they can be detected, and the third part depends on previewed road input. The performance of the suspension is evaluated in terms of frequency domain characteristics and time responses to ramp road input and cornering forces. The effects of each part of the suspension controller on the system behavior are examined.

Hardware-in-the-loop 시뮬레이션을 이용한 연속 가변식 반능동 현가 시스템의 차량 동역학적 해석 (Vehicle dynamic analysis of continuously controlled semi-active suspension using hardware-in-the-loop simulation)

  • 황성호;허승진;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1107-1112
    • /
    • 1996
  • A semi-active suspension system with continuously variable damper is greatly expected to be mainly used in the future as a high-performance suspension system due to its cost-effectiveness, light weight, and low energy consumption. To develop the suitable control logic for the semi-active suspension system, the hardware-in-the-loop simulation is performed with the experimental continuously variable damper combined with a quarter-car model. The hardware-in-the-loop simulation results are compared for passive, on/off controlled, and continuously controlled dampers in the aspects of ride comfort and driving safety, assuming each damper to be installed on a vehicle.

  • PDF

Self-Tuning Gain-Scheduled Skyhook Control for Semi-Active Suspension System: Implementation and Experiment

  • Tae, Hong-Kyung;Chul, Sohn-Hyun;Ryong, Jung-Jae;Shik, Hong-Keum
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.178.4-178
    • /
    • 2001
  • In this paper a self-tuning gain-scheduled skyhook control for semi-active suspension systems is investigated. The dynamic characteristics of a continuously variable damper including electro-hydraulic pressure control valves is analyzed. A 2-d.o.f. time-varying quarter-car model that permits variations in sprung mass and suspension spring coefficient is considered. The self-tuning skyhook control algorithm proposed in this paper requires only the measurement of body acceleration. The absolute velocity of the sprung mass and the relative velocity of the suspension deflection are estimated by using integral filters. The skyhook gains are gain-scheduled in such a way that the body acceleration and the dynamic tire force are optimized. An ECU prototype ...

  • PDF

Dynamics of the Macpherson Strut Motor-Vehicle Suspension System in Point and Joint Coordinates

  • Attia, Hazem-Ali
    • Journal of Mechanical Science and Technology
    • /
    • 제17권9호
    • /
    • pp.1287-1296
    • /
    • 2003
  • In this paper the dynamic analysis of the Macpherson strut motor-vehicle suspension system is presented. The equations of motion are formulated using a two-step transformation. Initially, the equations of motion are derived for a dynamically equivalent constrained system of particles that replaces the rigid bodies by applying Newton's second law The equations of motion are then transformed to a reduced set in terms of the relative joint variables. Use of both Cartesian and joint variables produces an efficient set of equations without loss of generality For open chains, this process automatically eliminates all of the non-working constraint forces and leads to an efficient solution and integration of the equations of motion. For closed loops, suitable joints should be cut and few cut-joints constraint equations should be included for each closed chain. The chosen suspension includes open and closed loops with quarter-car model. The results of the simulation indicate the simplicity and generality of the dynamic formulation.

On the Improvement of a Fully Recursive Formulation for the Dynamic Analysis of Multibody Systems

  • Kang, Sheen-Gil;Yoon, Yong-San
    • Journal of Mechanical Science and Technology
    • /
    • 제17권1호
    • /
    • pp.77-84
    • /
    • 2003
  • Virtual work in multibody systems is frequently expressed as the inner product of the virtual displacement and the resultant force at the centroid. But provided that the resultant force is converted into the equipollent forces there is no restriction on where the analysis reference point is placed. There are basically three candidate points : the centroid, joint point and the instant global origin. The traditional fully recursive formulation uses the centroid, but the present work verifies that the instant global origin always shows better efficiency (e.g. 86% CPU time of the centroid for quarter car model) and joint point shows the efficiency between that of the centroid and the instant global origin. A discussion on how important it is to define the analysis reference point properly in a fully recursive formulation is also presented.

자기동조기법을 이용한 반능동 현가장치의 수정된 스카이훅제어 구현 및 실험 (Self-Tuning Modified Skyhook Control for Semi -Active Suspension Systems)

  • 정재룡;손현철;홍금식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.114-114
    • /
    • 2000
  • In this paper a self-tuning modified skyhook control for the semi-active suspension systems is investigated. The damping force generation mechanism is modeled We consider a 2 DOF time-varying quarter car model that permits parameter variations of the sprung mass and suspension spring coefficient. The modified skyhook control algorithm proposed in this paper requires only the measurement of body acceleration. The absolute velocity of the sprung mass and the relative velocity of the suspension deflection are estimated by using integral filters, according to parameter variations. The skyhook gains are designed in such a way that the body acceleration and the dynamic tire force are optimized. An ECU prototype will be discussed

  • PDF

교차곱항에 제어입력의 포화를 고려한 LQR 설계 및 자동차 능동 현가장치 제어에의 응용 (LQR Design Considering Control Input Saturation in Cross-Product Term and Its Application to an Automotive Active Suspension Control)

  • 서영봉;최재원
    • 한국정밀공학회지
    • /
    • 제16권5호통권98호
    • /
    • pp.169-174
    • /
    • 1999
  • In this paper, the CLQR(Constrained LQR) controller, which considers the actuator saturation in a cross-product term of a given performance index for an automotive active suspension control has been proposed. The effects of actuator saturations have been reflected directly in the states by using the linear relation between the control input and states. The method proposed here is more effective and intuitive compared with the conventional schemes. The CLQR has been applied to designing an automotive active suspension control system to verify its effectiveness and practical aspects.

  • PDF