• Title/Summary/Keyword: A least square error

Search Result 625, Processing Time 0.024 seconds

A modified partial least squares regression for the analysis of gene expression data with survival information

  • Lee, So-Yoon;Huh, Myung-Hoe;Park, Mira
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.5
    • /
    • pp.1151-1160
    • /
    • 2014
  • In DNA microarray studies, the number of genes far exceeds the number of samples and the gene expression measures are highly correlated. Partial least squares regression (PLSR) is one of the popular methods for dimensional reduction and known to be useful for the classifications of microarray data by several studies. In this study, we suggest a modified version of the partial least squares regression to analyze gene expression data with survival information. The method is designed as a new gene selection method using PLSR with an iterative procedure of imputing censored survival time. Mean square error of prediction criterion is used to determine the dimension of the model. To visualize the data, plot for variables superimposed with samples are used. The method is applied to two microarray data sets, both containing survival time. The results show that the proposed method works well for interpreting gene expression microarray data.

Distance Relaying Algorithm Based on An Adaptive Data Window Using Least Square Error Method (최소자승법을 이용한 적응형 데이터 윈도우의 거리계전 알고리즘)

  • Jeong, Ho-Seong;Choe, Sang-Yeol;Sin, Myeong-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.8
    • /
    • pp.371-378
    • /
    • 2002
  • This paper presents the rapid and accurate algorithm for fault detection and location estimation in the transmission line. This algorithm uses wavelet transform for fault detection and harmonics elimination and utilizes least square error method for fault impedance estimation. Wavelet transform decomposes fault signals into high frequence component Dl and low frequence component A3. The former is used for fault phase detection and fault types classification and the latter is used for harmonics elimination. After fault detection, an adaptive data window technique using LSE estimates fault impedance. It can find a optimal data window length and estimate fault impedance rapidly, because it changes the length according to the fault disturbance. To prove the performance of the algorithm, the authors test relaying signals obtained from EMTP simulation. Test results show that the proposed algorithm estimates fault location within a half cycle after fault irrelevant to fault types and various fault conditions.

The adaptive reduced state sequence estimation receiver for multipath fading channels (이동통신 환경에서 적응상태 축약 심볼열 추정 수신기)

  • 이영조;권성락;문태현;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.7
    • /
    • pp.1468-1476
    • /
    • 1997
  • In mobile communication systems, the Reduced State Sequence Estimation(RSSE) receiver must be able to track changes in the channel. This is carried out by the adaptive channel estimator. However, when the tentative decisions are used in the channel estimator, incorrect decisions can cause error propagation. This paper presents a new channel estimator using the path history in the Viterbi decoder for preventing error propagation. The selection of the path history in the Viterbi decoder for preventing error propagation. The selection of the path history for the channel estimator depends on the path metric as in the decoding of the Viterbi decoder in RSSE. And a discussion on the channel estimator with different adaptation algorithms such as Least Mean Square(LMS) algorithm and Recursive Least Square(RLS) algorithm is provided. Results from computer simulations show that the RSSE receivers using the proposed channel estimator have better performance than the other conventional RSSE receiver, and that the channel estimator with RLS algorithm is adequate for multipath fading channel.

  • PDF

Kurtosis Driven Variable Step-Size Normalized Least Mean Square Algorithm for RF Repeater

  • Han, Yong-Sik;Yang, Woon-Geun
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.2
    • /
    • pp.159-162
    • /
    • 2010
  • This paper presents a new Kurtosis driven Variable Step-Size Normalized Least Mean Square (KVSSN-LMS) algorithm to prevent repeater from oscillation due to feedback signal of radio frequency (RF) repeater. To get better Mean Square Error (MSE) performance, step-size is adjusted using the kurtosis. The proposed algorithm shows the better performance of steady state MSE. The proposed algorithm shows a better ERLE performance than that of KVSS-LMS, VSS-NLMS, NLMS algorithms.

Implementation of adaptive filters using fast hadamard transform (고속하다마드 변환을 이용한 적응 필터의 구현)

  • 곽대연;박진배;윤태성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1379-1382
    • /
    • 1997
  • We introduce a fast implementation of the adaptive transversal filter which uses least-mean-square(LMS) algorithm. The fast Hadamard transform(FHT) is used for the implementation of the filter. By using the proposed filter we can get the significant time reduction in computatioin over the conventional time domain LMS filter at the cost of a little performance. By computer simulation, we show the comparison of the propsed Hadamard-domain filter and the time domain filter in the view of multiplication time, mean-square error and robustness for noise.

  • PDF

Non-uniform Weighted Vibration Target Positioning Algorithm Based on Sensor Reliability

  • Yanli Chu;Yuyao He;Junfeng Chen;Qiwu Wu
    • Journal of Information Processing Systems
    • /
    • v.19 no.4
    • /
    • pp.527-539
    • /
    • 2023
  • In the positioning algorithm of two-dimensional planar sensor array, the estimation error of time difference-ofarrival (TDOA) algorithm is difficult to avoid. Thus, how to achieve accurate positioning is a key problem of the positioning technology based on planar array. In this paper, a method of sensor reliability discrimination is proposed, which is the foundation for selecting positioning sensors with small error and excellent performance, simplifying algorithm, and improving positioning accuracy. Then, a positioning model is established. The estimation characteristics of the least square method are fully utilized to calculate and fuse the positioning results, and the non-uniform weighting method is used to correct the weighting factors. It effectively handles the decreased positioning accuracy due to measurement errors, and ensures that the algorithm performance is improved significantly. Finally, the characteristics of the improved algorithm are compared with those of other algorithms. The experiment data demonstrate that the algorithm is better than the standard least square method and can improve the positioning accuracy effectively, which is suitable for vibration detection with large noise interference.

Integer-Valued HAR(p) model with Poisson distribution for forecasting IPO volumes

  • SeongMin Yu;Eunju Hwang
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.3
    • /
    • pp.273-289
    • /
    • 2023
  • In this paper, we develop a new time series model for predicting IPO (initial public offering) data with non-negative integer value. The proposed model is based on integer-valued autoregressive (INAR) model with a Poisson thinning operator. Just as the heterogeneous autoregressive (HAR) model with daily, weekly and monthly averages in a form of cascade, the integer-valued heterogeneous autoregressive (INHAR) model is considered to reflect efficiently the long memory. The parameters of the INHAR model are estimated using the conditional least squares estimate and Yule-Walker estimate. Through simulations, bias and standard error are calculated to compare the performance of the estimates. Effects of model fitting to the Korea's IPO are evaluated using performance measures such as mean square error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE) etc. The results show that INHAR model provides better performance than traditional INAR model. The empirical analysis of the Korea's IPO indicates that our proposed model is efficient in forecasting monthly IPO volumes.

A Comparative Study of the Parameter Estimation Method about the Software Mean Time Between Failure Depending on Makeham Life Distribution (메이크헴 수명분포에 의존한 소프트웨어 평균고장간격시간에 관한 모수 추정법 비교 연구)

  • Kim, Hee Cheul;Moon, Song Chul
    • Journal of Information Technology Applications and Management
    • /
    • v.24 no.1
    • /
    • pp.25-32
    • /
    • 2017
  • For repairable software systems, the Mean Time Between Failure (MTBF) is used as a measure of software system stability. Therefore, the evaluation of software reliability requirements or reliability characteristics can be applied MTBF. In this paper, we want to compare MTBF in terms of parameter estimation using Makeham life distribution. The parameter estimates used the least square method which is regression analyzer method and the maximum likelihood method. As a result, the MTBF using the least square method shows a non-decreased pattern and case of the maximum likelihood method shows a non-increased form as the failure time increases. In comparison with the observed MTBF, MTBF using the maximum likelihood estimation is smallerd about difference of interval than the least square estimation which is regression analyzer method. Thus, In terms of MTBF, the maximum likelihood estimation has efficient than the regression analyzer method. In terms of coefficient of determination, the mean square error and mean error of prediction, the maximum likelihood method can be judged as an efficient method.

Least Square Channel Estimation for Two-Way Relay MIMO OFDM Systems

  • Fang, Zhaoxi;Shi, Jiong
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.806-809
    • /
    • 2011
  • This letter considers the channel estimation for two-way relay MIMO OFDM systems. A least square (LS) channel estimation algorithm under block-based training is proposed. The mean square error (MSE) of the LS channel estimate is computed, and the optimal training sequences with respect to this MSE are derived. Some numerical examples are presented to evaluate the performance of the proposed channel estimation method.

A Study on Adaptive Interference Cancellation System of RF Repeater Using the Grouped Constant-Modulus Algorithm (그룹화 CMA 알고리즘을 이용한 RF 중계기의 적응 간섭 제거 시스템(Adaptive Interference Cancellation System)에 관한 연구)

  • Han, Yong-Sik;Yang, Woon-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.9
    • /
    • pp.1058-1064
    • /
    • 2008
  • In this paper, we proposed a new hybrid interference canceller using the adaptive filter with Grouped CMA(Constant Modulus Algorithm)-LMS(Least Mean Square) algorithm in the RF(Radio Frequency) repeater. The feedback signal generated from transmitter antenna to receiver antenna reduces the performance of the receiver system. The proposed interference canceller has better channel adaptive performance and a lower MSE(Mean Square Error) than conventional structure because it uses the cancellation method of Grouped CMA algorithm. This structure reduces the number of iterations fur the same MSE performance and hardware complexity compared to conventional nonlinear interference canceller. Namely, MSE values of the proposed algorithm were lower than those of LMS algorithm by 2.5 dB and 4 dB according to step sizes. And the proposed algorithm showed fast speed of convergence and similar MSE performance compared to VSS(Variable Step Size)-LMS algorithm.