• 제목/요약/키워드: A Three-dimensional Effect

검색결과 2,125건 처리시간 0.03초

Numerical Analysis of Three Dimensional Supersonic Flow around Cavities

  • Woo Chel-Hun;Kim Jae-Soo;Kim Jong-Rok
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 PARALLEL CFD 2006
    • /
    • pp.311-314
    • /
    • 2006
  • The supersonic flow around tandem cavities was investigated by three- dimensional numerical simulations using the Reynolds-Averaged Navier-Stokes(RANS) equation with the $\kappa-\omega$ thrbulence model. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves, and the acoustic effect transmitted from wake flow to upstream. The upwind TVD scheme based on the flux vector split using van Leer's limiter was used as the numerical method. Numerical calculations were performed by the parallel processing with time discretizations carried out by the 4th-order Runge-Kutta method. The aspect ratio of cavities are 3 for the first cavity and 1 for the second cavity. The ratio of cavity interval to depth is 1. The ratio of cavity width to depth is 1 in the case of three dimensional flow. The Mach number and the Reynolds number were 1.5 and $4.5{\times}10^5$, respectively. The characteristics of the dominant frequency between two-dimensional and three-dimensional flows were compared, and the characteristics of the second cavity flow due to the fire cavity flow cavity flow was analyzed. Both two dimensional and three dimensional flow oscillations were in the 'shear layer mode', which is based on the feedback mechanism of Rossiter's formula. However, three dimensional flow was much less turbulent than two dimensional flow, depending on whether it could inflow and outflow laterally. The dominant frequencies of the two dimensional flow and three dimensional flows coincided with Rossiter's 2nd mode frequency. The another dominant frequency of the three dimensional flow corresponded to Rossiter's 1st mode frequency.

  • PDF

압력 조절 장치를 갖는 풍동 지면판에 관한 수치해석적 연구 (NUMERICAL STUDY ON WIND TUNNEL GROUND PLATE WITH A PRESSURE CONTROL DEVICE)

  • 이민재;김철완
    • 한국전산유체공학회지
    • /
    • 제15권4호
    • /
    • pp.53-59
    • /
    • 2010
  • Preliminary design of a ground plate, a device installed close to the aircraft model for wind tunnel test to simulate the ground effect, was performed by a numerical simulation. A two-dimensional numerical study was performed initially to decide the optimal leading edge and flap configurations. Then, three-dimensional studies were conducted to decide the optimal flap deflection angle for pressure distribution reduction since the plate and the plate supporting system generate static pressure difference between the upper and lower flow regions. Three-dimensional simulation additionally studied the effect of the clearance between the plate and the wind tunnel side wall. For the efficiency of computation, half model was simulated and a symmetric boundary condition was applied on the center plane. Based on the preliminary design, a ground plate was designed, manufactured and tested at the Korea Aerospace Research Institute(KARI) wind tunnel. The measured pressure differences versus flap deflection angle agreed well with the predicted results.

축대칭 핀틀노즐의 3차원 효과 분석 (Three-dimensional Effects of an Axi-symmetric Pintle Nozzle)

  • 이강민;성홍계
    • 한국추진공학회지
    • /
    • 제22권6호
    • /
    • pp.47-55
    • /
    • 2018
  • 축 대칭 형상의 핀틀 노즐에서 3차원 효과 여부를 파악하기 위하여 3차원 수치해석을 수행하였다. 초음속 노즐을 통해 배출되는 압축성 유동을 정확히 예측하기 위해 k-${\omega}$ SST 난류 모델에 압축성 보정 모델을 결합하였다. 핀틀의 전단과 후단에서 재순환 영역이 관찰되었으며, 노즐을 통해 분출되는 유동은 복잡한 충격파 구조를 형성하였다. 각 핀틀 위치에서 2차원 축대칭과 3차원의 수치해석 결과를 실험데이터와 비교해 볼 때 3차원 결과가 접선 방향 유동의 3차원 효과로 인해 유동 박리 위치와 박리로 인한 압력 상승 변화과정을 정확히 예측하였다.

3차원 전극을 사용한 Rhodamine B의 전기분해에 미치는 운전인자의 영향 (Effect of Operating Parameters on Electrochemical Degradation of Rhodamine B by Three-dimensional Electrode)

  • 김동석;박영식
    • 한국환경보건학회지
    • /
    • 제35권4호
    • /
    • pp.295-303
    • /
    • 2009
  • A simulated wastewater containing the dye Rhodamine B (RhB) was electrolytically treated using a three-dimensional electrode reactor equipped with granular activated carbon (GAC) as particle electrode. The effect of type of packing material (GAC, ACF, Nonwoven fabric fiber coated with activated carbon), amounts of GAC packing (25-100 g), current (0.5-3 A) and electrolyte concentration (0.5-3 g/l) was evaluated. Experimental results showed that performance for RhB decolorization of the 3 three-dimensional electrodes lie in: GAC > Nonwoven fabric fiber > ACF. When considered RhB decolorization, oxidants concentration and electric power, optimum GAC dosage was 50 g. Generated concentration of 3 oxidants ($ClO_2$, free Cl, $H_2O_2$) was increased with increase of applied current, however optimum current for RhB degradation was 2.5 A. The oxidants concentration was increased with increase of NaCl concentration and optimum NaCl dosage for RhB degradation was 1.5 g/l.

A ROBUST METHOD MINIMIZING DIGITIZATION ERRORS IN SKELETONIZATION OF THREE DIMENSIONAL BINARY SEGMENTED IMAGE

  • Shin, Hyun-Kyung
    • Journal of applied mathematics & informatics
    • /
    • 제15권1_2호
    • /
    • pp.425-434
    • /
    • 2004
  • Pattern recognition in three dimensional image is highly sensitive to assigned value and formation of voxels (pixels for two dimension case). However, occurred while digital imaging, digitization error leads to unpredictable noises in image data. Skeletonization, a powerful tool of pattern recognition, is sensitively dependent on boundary formation. Without successful controlling of the noises, the results of skeletonization can not be allowed as a stable solution. To minimize the effect of noises affecting to boundary formation, we developed a robust processing method useful in skeletonization technique for pattern recognition. Finally, we provide rigorous test results achieved throughout simulation on analytic three dimensional image.

3차원 계측시스템을 이용한 개더스커트 형상 분석 (Analysis of the Shape of Gathered Skirts using a Three-Dimensional Measurement System)

  • 정희경;이명희
    • 한국의류학회지
    • /
    • 제29권11호
    • /
    • pp.1399-1409
    • /
    • 2005
  • The purpose of this study was to analyze the shape of gathered skirts using a three-dimensional measurement system. And in this experiment, I try to accumulate three-dimensional data of wearing model and to figure out analyzing method made by shape of clothes. The experimental design consists of two factorial designs. I set up three different kinds of fabrics, ratio of gathers. Therefore nine samples were made. The instrument and tools for three-dimensional measurement was whole body 3D scanner. Analysis program used in experiment is RapidForm 2004 PP1 and Pattern Design 2000. Data analysis utilizes SPSS WIN 10.0 Package. T-test to effect an inspection of evidence, there was difference about measurement times. One-way ANOVA to analysis effect of gather made by gathering conditions. The following results were obtained; 1. As a result of inspecting an error several times using a three-dimension measurement system, convinced data was obtained. 2. At front, distribution of gap amount was larger than back. And as ratio of gathers increased, distribution of gap amount showed regularly. 3. After analyzing horizontal sectional figure of skirts, as a height of skirt changed from waist to the bottom of skirts, the results showed as follows. While section width, section thickness, node width, node depth increased, node count decreased. 4. With the horizontal section levels of gather skirt, the silhouette on middle hip section was similar with the silhouette of body line. And as ratio of gathers around hip section increased, nodes showed regularly. At the bottom of skirts showed different nodes by different gathering condition.

해석모델을 이용한 3차원 이온주입 시뮬레이터 개발 (Development of Three-Dimensional Ion Implantation Simulator Using Analytical Model)

  • 박화식;이준하;황호정
    • 전자공학회논문지A
    • /
    • 제30A권12호
    • /
    • pp.43-50
    • /
    • 1993
  • Three-dimensional simulator for the ion implantation process is developed. The simulator based on an analytical model which would be a choice with high computational efficiency and accuracy. This is an important issue for the simulation of a numerous number of processing steps required in the fabrication of ULSI or GSI. The model can explain scattering and bulk channeling mechanism (1D). It can also explain depth dependent lateral diffusion effect(2D) and mask effect(3D). The model is consist of one-dimensional JPD(Joined Pearson Distribution) function and two-dimensional modified Gaussian functions. Final implanted profiles under typical mask structures such as hole, line and island structure are obtained with varying ion species.

  • PDF

전산유체역학을 이용한 풍황탑 차폐효과 해석 (Analysis of the Effect of Met Tower Shadow using Computational Fluid Dynamics)

  • 김태성;이희남;김현구
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.35.1-35.1
    • /
    • 2011
  • When the wind speed is measured by the met-mast sensor it is distorted due to the shadow effect of tower. In this paper the tower shadow effect is analyzed by a computational fluid dynamics code. First three dimensional modeling and flow analysis of the met-mast system were performed. The results were compared with the available experimental wind-tunnel test data to confirm the validity of the meshes and turbulence model. Two-dimensional model was then developed based on the three-dimensional works and experimental data. 2D analysis for various Reynolds numbers and turbulence strengths were then performed to establish the tower shadow effect database, which can be utilized as correction factors for the measured wind energy.

  • PDF

지형공간정보체계를 이용한 3차원 도로시뮬레이션에 관한 연구 (A Study On The Three Dimensional Road Simulation Technique Based on GSIS)

  • 권혁춘;이병걸
    • 대한공간정보학회지
    • /
    • 제12권2호
    • /
    • pp.11-15
    • /
    • 2004
  • 본 연구의 목적은 GSIS를 이용하여 3차원 동영상 도로 시뮬레이션에 관한 연구이다. 이를 위하여 제주도 남부의 해안선 지역을 설정하여 3차원도로 설계를 실시하였다. 사용된 자료는 1/5,000수치지도와 현지측량자료를 사용하였고, 도로시뮬레이션은 소프트웨어 microstation CAD, Inroads를 이용하였다. 해안도로의 특성상 도로주변의 식재인 꽃과 나무 등을 삽입하여 경관을 고려한 3차원 도로가 이루어지도록 설계를 시도하였다. GSIS기술을 이용하여 설계된 도로는 3차원 시뮬레이션이 성공적으로 이루어 졌으며, 특히 도로의 전진주행 및 후진주행 등을 선택하여 산악도로의 경관을 평가할 수 있어 본 연구의 결과는 실제공사 시 해안도로경관 시뮬레이션에 적용할 수 있을 것으로 판단된다.

  • PDF

Numerical Simulation of Three-Dimensional Motion of Droplets by Using Lattice Boltzmann Method

  • Alapati, Suresh;Kang, Sang-Mo;Suh, Yong-Kweon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.2-5
    • /
    • 2008
  • This study describes the numerical simulation of three-dimensional droplet formation and the following motion in a cross-junction microchannel by using the Lattice Boltzmann Method (LBM). Our aim is to develop the three-dimensional binary fluids model, consisting of two sets of distribution functions to represent the total fluid density and the density difference, which introduces the repulsive interaction consistent with a free-energy function between two fluids. We validated the LBM code with the velocity profile in a 3-dimensional rectangular channel. Then, we applied our code to the numerical simulation of a binary fluid flow in a cross-junction channel focusing on the investigation of the droplet formulation. Due to the pressure and interfacial-tension effect, one component of the fluids which is injected from one inlet is cut off into many droplets periodically by the other component which is injected from the other inlets. We considered the effect of the boundary conditions for density difference (order parameter) on the wetting of the droplet to the side walls.

  • PDF