• Title/Summary/Keyword: A State Space Model

Search Result 931, Processing Time 0.029 seconds

An Experimental and Modeling Study on the Oxidation Kinetics of Nitric Oxide over Platinum-based Catalysts (백금계 촉매상에서 산화질소(NO)의 산화반응속도에 관한 실험 및 모델링 연구)

  • Kim, Young-Deuk;Jeong, Soo-Jin;Kim, Woo-Seung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.71-80
    • /
    • 2012
  • To improve the $NO_X$ conversion over a SCR (selective catalytic reduction) catalyst, the DOC (diesel oxidation catalyst) is usually placed upstream of the SCR catalyst to enhance the fast SCR reaction ($4NH_3+2NO+2NO_2{\rightarrow}4N_2+6H_2O$) using equimolar amounts of NO and $NO_2$. Here, a ratio of $NO_2/NO_X$ above 50% should be avoided, because the reaction with $NO_2$ only ($4NH_3+4NO+O_2{\rightarrow}4N_2+6H_2O$) is slower than the standard SCR reaction ($4NH_3+4NO+O_2{\rightarrow}4N_2+6H_2O$). In order to accurately predict the performance characteristics of SCR catalysts, it is therefore desired to develop a more simple and reliable mathematical and kinetic models on the oxidation kinetics of nitric oxide over a DOC. In the present work, the prediction accuracy and limit of three different chemical reaction kinetics models are presented to describe the chemicophysical characteristics and conversion performance of DOCs. Steady-state experiments with DOCs mounted on a light-duty four-cylinder 2.0-L turbocharged diesel engine then are performed, using an engine-dynamometer system to calibrate the kinetic parameters such as activation energies and preexponential factors of heterogeneous reactions. The reaction kinetics for NO oxidation over Pt-based catalysts is determined in conjunction with a transient one-dimensional (1D) heterogeneous plug flow reactor (PFR) model with diesel exhaust gas temperatures in the range of 115~$525^{\circ}C$ and space velocities in the range of $(0.4{\sim}6.5){\times}10^5\;h^{-1}$.

Experimental Investigation on Vibration Control Performances of the Piezoelectric Hybrid Mount (압전 하이브리드 마운트의 진동제어 성능에 대한 실험적 고찰)

  • Han, Young-Min
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.203-209
    • /
    • 2020
  • A hybrid mount featuring rubber element and piezoelectric actuator is devised to reduce vibration when starting a vehicle engine. As a first step, a passive mount adopting rubber element is manufactured and its dynamic characteristics are experimentally evaluated. After evaluating dynamic characteristics of the manufactured inertial piezoelectric actuator, the proposed hybrid mount is then established by integrating the piezoelectric actuator with the rubber element for performance improvement at non-resonant high frequencies. A mathematical model of the established active vibration control system is formulated and expressed in the state space form. Subsequently, sliding mode controller (SMC) is designed to attenuate the vibration transmitted from the base excitation. Finally, control performances of the proposed hybrid mount are evaluated such as transmissibility in frequency domain and time responses.

Development of a Nonlinear SI Scheme using Measured Acceleration Increment (측정 가속도 증분을 사용한 비선형 SI 기법의 개발)

  • Shin, Soo-Bong;Oh, Seong-Ho;Choi, Kwang-Hyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.6 s.40
    • /
    • pp.73-80
    • /
    • 2004
  • A nonlinear time-domain system identification algorithm using measured acceleration data is developed for structural damage assessment. To take account of nonlinear behavior of structural systems, an output error between measured and computed acceleration increments has been defined and a constrained nonlinear optimization problem is solved for optimal structural parameters. The algorithm estimates time-varying properties of stiffness and damping parameters. Nonlinear response of restoring force of a structural system is recovered by using the estimated time-varying structural properties and computed displacement by Newmark-$\beta$ method. In the recovery, no pre-defined model for inelastic behavior has been assumed. In developing the algorithm, noise and incomplete measurement in space and state have been considered. To examine the developed algorithm, numerical simulation and laboratory experimental studies on a three-story shear building have been carried out.

Avoidance of Internal Resonances in Hemispherical Resonator Assemblies from Fused Quartz Connected by Indium Solder

  • Sarapuloff, Sergii A.;Rhee, Huinam;Park, Sang-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.835-841
    • /
    • 2013
  • Modern solid-state gyroscopes (HRG) with hemispherical resonators from high-purity quartz glass and special surface superfinishing and ultrathin gold coating become the best instruments for precise-grade inertial reference units (IRU) targeting long-term space missions. Designing of these sensors could be a notable contribution into development of Korea as a space nation. In participial, 40mm diameter thin-shell resonator from high-purity fused quartz, fabricated as a single-piece with its supporting stem has been designed, machined, etched, tuned, tested, and delivered by STM Co. (ATS of Ukraine) several years ago; an extremely-high Q-factor (upto 10~20 millions) has been shown. Understanding of the best way how to match such a unique sensor with inner glass assembly of the gyro means how to use the high potential in a maximal extent; and this has become the urgent task. Inner quartz glass assembly has a very thin indium (In) layer soldered the resonator and its silica base (case), but effects of internal resonances between operational modal pair of the shell-cup and its side (parasitic) modes can notable degrade the potential of the sensor as a whole, instead of so low level of resonator's intrinsic losses. Unfortunately, there are special combinations of dimensions of the parts (so-called, "resonant sizes"), when intensive losses of energy occurs. The authors proposed to use the length of stem's fixture as an additional design parameter to avoid such cases. So-called, a cyclic scheme of finite element method (FEM) and ANSYS software were employed to estimate different combinations of gyro assembly parameters. This variant has no mismatches of numerical origin due to FEM's discrete mesh. The optimum length and dangerous "resonant lengths" have been found. The special attention has been paid to analyses of 3D effects in a cup-stem transient zone, including determination of a difference between the positions of geometrical Pole of the resonant hemisphere and of its "dynamical Pole", i.e., its real zone of oscillation node. Boundary effects between the shell (cup) and 3D short "beams" (inner and outer stems) have been ranged. The results of the numerical experiments have been compared with the classic model of a quasi-hemispherical shell band with inextensional midsurface, and the solution using Rayleigh's functions of the $1^{st}$ and $2^{nd}$ kinds. To guarantee the truth of the recommended sizes to a designer of the real device, the analytical and FEM results have been compared with experimental data for a party of real resonators. The consistency of the results obtained by different means has been shown with errors less than 5%. The results notably differ from the data published earlier by different researchers.

  • PDF

Three-dimensional Stability Analysis of A Large Underground Hall in Mined Area (채굴적 주변 대형 지하광장의 3차원 안정성해석)

  • 송원경;한공창
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.441-446
    • /
    • 2000
  • Numerical analysis using FLAC3D has been conducted to estimate the stability of a large underground hall that is to be excavated in a mined area and constructed as an unit of a resort park. Numerical modelling is divided into two stages. The first stage is related to the analysis of the mechanical stability of the hall itself and the second to that of the influence of an adjacent mined cavity upon the hall. In the first stage, the stability of the hall is judged from the interpretation of numerical results in three respects: convergence of the unbalanced force of the model, occurrence of plastic zones and distribution of the displacement. In the second stage, variation of the stress state around the underground hall due to the existence of the cavity is compared to that in the case of the absence of the cavity. Through these analyses, it could be known that the large underground hall is not exposed to any mechanical problems and also not affected by the adjacent cavity.

  • PDF

A Development Methodology of the Interactive Ubiquitous Service Model for a Mixed-Use Complex in u-City (u-City 활성화를 위한 복합단지의 인터액티브 u-서비스 모델 개발 방법)

  • Park, Kwang-Ho;Kim, Yun-Hyung
    • Information Systems Review
    • /
    • v.11 no.1
    • /
    • pp.197-215
    • /
    • 2009
  • As the ubiquitous technology has been widespread, the u-service development driven by the private sector is increasing these days. In this paper, a new development methodology of interactive u-services for a mixed-use complex in u-City is proposed. The current state-of-the-art IT, Web2.0, assumes that information must be communicated in both way, not only from service provides to users but also from users to service providers. Here the user-driven u-service will be utilized for service providers to customize user services. By this interactive u-service paradigm, the information users become the information providers so that the mixed-use complex will take advantage of massive information. Also, admitting that the mixed-use complex is limited in terms of the space size, the network effect of information and shared contents created through the interactive u-services can be maximized.

An Impact Analysis of the Korea-Japan Undersea Tunnel Project;focus on Economic Potential Model Analysis (한일간 해저터널사업의 효과분석;성장잠재력 분석을 중심으로)

  • Park, Jin-Hee
    • Journal of Navigation and Port Research
    • /
    • v.32 no.1
    • /
    • pp.47-56
    • /
    • 2008
  • With rapid growing of the Northeastern Asia, the interest for the connection of Infrastructure that was behind of interesting until now is getting larger. In a line of same connection, UN-ESCAP are forwarding transcontinental railway project, asian highway project et al.. And this study aimed at analysis on the effect that extended to a space by Korea-Japan undersea tunnel project. In aspect of a national land balanced-development to solve various problems such as overcrowding in capital region, unbalanced state by regions, weak exchange between South and North Korea, and weakness of national land basis to prepare for unification et al., this study consulted the economic potentiality model as a analysis method to examine an effect. In this analysis, I used 24 scenarios including all cases by combination of 3 scenarios for Korea-Japan undersea tunnel, 4 scenarios for transportation modes in the section of undersea tunnel, and 2 scenarios for adjacency infrastructure. Transportation modes in the section of undersea tunnel are railway, car-train, mixing way of railway and car-train, and mixing way of road and railway. Adjacency infrastructure applied railway and road. In all scenarios, Korea showed higher growth potentiality than Japan. Also, proposal plan C route relatively showed better in national land balanced-development than other proposal plans. The growth potentiality relatively appeared higher by buildup of a connection together with non-capital regions from the construction of Korea-Japan undersea tunnel. In aspect of Northeastern Asia, it resulted in a increasing of trade and chance of network formation in the region of Asia through infrastructure connection. But, in considering passenger and various factors that extended to the economic growth, this analysis have some limitation. Therefore, I hope that deep studies will continuously perform with various factors.

Development of an Optimization Model and Algorithm Based on Transportation Problem with Additional Constraints (추가 제약을 갖는 수송문제를 활용한 공화차 배분 최적화 모형 및 해법 개발)

  • Park, Bum Hwan;Kim, Young-Hoon
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.6
    • /
    • pp.833-843
    • /
    • 2016
  • Recently, in the field of rail freight transportation, the number of trains dedicated for shippers has been increasing. These dedicated trains, which run on the basis of a contract with shippers, had been restricted to the transportation of containers, or so called block trains. Nowadays, such commodities have extended to cement, hard coal, etc. Most full freight cars are transported by dedicated trains. But, for empty car distribution, the efficiency still remains questionable because the distribution plan is manually developed by dispatchers. In this study, we investigated distribution models delineated in the KTOCS system which was developed by KORAIL as well as mathematical models considered in the state-of-the-art. The models are based on optimization models, especially the network flow model. Here we suggest a new optimization model with a framework of the column generation approach. The master problem can be formulated into a transportation problem with additional constraints. The master problem is improved by adding a new edge between the supply node and the demand node; this edge can be found using a simple shorted path in the time-space network. Finally, we applied our algorithm to the Korean freight train network and were able to find the total number of empty car kilometers decreased.

Energy-Aware Self-Stabilizing Distributed Clustering Protocol for Ad Hoc Networks: the case of WSNs

  • Ba, Mandicou;Flauzac, Olivier;Haggar, Bachar Salim;Makhloufi, Rafik;Nolot, Florent;Niang, Ibrahima
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2577-2596
    • /
    • 2013
  • In this paper, we present an Energy-Aware Self-Stabilizing Distributed Clustering protocol based on message-passing model for Ad Hoc networks. The latter does not require any initialization. Starting from an arbitrary configuration, the network converges to a stable state in a finite time. Our contribution is twofold. We firstly give the formal proof that the stabilization is reached after at most n+2 transitions and requires at most $n{\times}log(2n+{\kappa}+3)$ memory space, where n is the number of network nodes and ${\kappa}$ represents the maximum hops number in the clusters. Furthermore, using the OMNeT++ simulator, we perform an evaluation of our approach. Secondly, we propose an adaptation of our solution in the context of Wireless Sensor Networks (WSNs) with energy constraint. We notably show that our protocol can be easily used for constructing clusters according to multiple criteria in the election of cluster-heads, such as nodes' identity, residual energy or degree. We give a comparison under the different election metrics by evaluating their communication cost and energy consumption. Simulation results show that in terms of number of exchanged messages and energy consumption, it is better to use the Highest-ID metric for electing CHs.

Structure Refinement of $Nd_3Ba_5Co_4O_{15}$ Phase by Rietveld Method (Rietveld법에 의한 $Nd_3Ba_5Co_4O_{15}$상의 정밀화)

  • 이재열;송수호
    • Korean Journal of Crystallography
    • /
    • v.9 no.1
    • /
    • pp.48-52
    • /
    • 1998
  • The new Nd3Ba5Co4O15 phase was synthesized with Nd2O3, BaCO3, and Co3O4 by solid state reaction at 1200℃ with intermittent grinding. The crystal structure of Nd3Ba5Co4O15 has been refined on X-ray diffraction powder data by means of Rietveld method. The starting model was based on the Nd3.43Ba4.42Co2.23Al1.77O15 structure. The crystal system was hexagonal, space group P63mc(186), a=11.629(3) Å, c=6.842(2) Å. Final R values were Rwp=0.097 and Rp=0.068. The structure consists of clusters of CoVICoIV3O15 in which a CoVI octahedron shares corners with 3CoIV tetrahedra.

  • PDF