• Title/Summary/Keyword: A State Space Model

Search Result 936, Processing Time 0.033 seconds

A Study on Small-Signal Model and Controller Design of Bi-directional DC-DC Converter (양방향 DC-DC 컨버터의 소신호 모델링 및 제어기 설계 연구)

  • Jeon, Seoung-Uk;Bae, Sun-Ho;Kwon, Na-Rae;Kim, Hye-Cheon;Seong, Dong-Ho;Park, Jung-Wook
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.25-26
    • /
    • 2014
  • 배터리를 사용하는 하이브리드 시스템의 확장으로 인하여 2차 전지를 활용할 수 있는 양방향 컨버터의 사용이 증가하고 이에 대한 연구의 필요성 또한 증가하고 있다. 기존 비절연형 단방향 컨버터는 인덕터의 전류와 부하단 캐패시터의 전압을 변수로 지정하고 고정 전원과 고정부하를 대입하여 모델링에 적용했지만, 실제 사용되는 양방향 컨버터의 동작과는 차이가 있다. 또한 이상적인 전원과는 달리 배터리의 단자전압은 SOC 및 충방전 상태에 따라 전압 변동이 일어나고 컨버터의 스위칭 동작에 의해 전압 리플이 발생하기 때문에 제어기를 설계하기 위해서는 이를 반영하여 해석하는 것이 필요하다. 본 논문에서는 비절연형 양방향 컨버터의 양쪽에 부착된 캐패시터가 모두 변수로 적용된 전달함수와 이를 이용하여 설계된 제어기를 제안한다. 컨버터 모델링에 State-Space Averaging 방법을 사용하여 양방향 컨버터의 소신호 분석을 하였고, 충전 모드와 방전 모드 일때 전달함수를 각각 구하였다. 앞서 구한 전달함수를 이용하여 pole/zero 분석을 통해 PI 제어기 설계를 하였고, 주파수 분석을 통해 안정성을 확인하였다.

  • PDF

A Study on the Feasibility of 'Lone Wolf' Terrorists in Korea: Focusing on IS Defector Student Kim's On-Line Behavior (국내에서의 '외로운 늑대'(Lone Wolf) 테러리스트 발생 가능성에 관한 연구: IS 가담 '김 모'군의 사이버공간에서의 행적을 중심으로)

  • Youn, Bonghan;Lee, Sangjin;Lim, Jongin
    • The Journal of Society for e-Business Studies
    • /
    • v.20 no.4
    • /
    • pp.127-150
    • /
    • 2015
  • Since 9/11 attack, internet has become a major space for terrorist activities and also emerged as the most important spot of lone wolf terrorists for acquiring tools and radicalization. The accident of student Kim's defection to IS (Islamic state) in January 2015 told us that Korea is not any more "terrorism clearance area" and leaded us to look closely into the possibility of lone wolf terrorist. In this paper, I developed a "lone wolf cyber evolution model" using various materials collected by preceding papers and interviewing investigators and terrorism experts in Korea. I analyze Kim's radicalization process using this model. And I picked and closely looked over some facilitating factors of lone wolf such as multi-cultural socialization, increase of international migrants, expansion alienation hierarchy and ideological conflicts deepening and predicted the possibility of lone wolf. Finally, this paper presents some effective policy measurements against lone wolf terrorism in Korea.

Modeling and Implementation of the Affordance-based Human-Machine Collaborative System (어포던스 기반의 인간-기계 협업 모델을 이용한 제조 시스템 구현 연구)

  • Oh, Yeong Gwang;Ju, Ikchan;Lee, Wooyeol;Kim, Namhun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.1
    • /
    • pp.34-42
    • /
    • 2015
  • Modeling and control of human-involved manufacturing systems poses a huge challenge on how to model all possible interactions among system components within the time and space dimensions. As the manufacturing environment are getting complicated, the importance of human in the manufacturing system is getting more and more spotlighted to incorporate the manufacturing flexibility. This paper presents a formal modeling methodology of affordance-based MPSG (Message-based Part State Graph) for a human-machine collaboration system incorporating supervisory control scheme for flexible manufacturing systems in automotive industry. Basically, we intend to extend the existing model of affordance-based MPSG to the real industrial application of humanmachine cooperative environments. The suggested extension with the real industrial example is illustrated in three steps; first, the manufacturing process and relevant data are analyzed in perspectives of MABA-MABA and the supervisory control; second, the manufacturing processes and task allocation between human and machine are mapped onto the concept of MABA-MABA; and the last, the affordance-based MPSG of humanmachine collaboration for the manufacturing process is presented with UMLs for verification.

A Study on Gesture Recognition Using Principal Factor Analysis (주 인자 분석을 이용한 제스처 인식에 관한 연구)

  • Lee, Yong-Jae;Lee, Chil-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.8
    • /
    • pp.981-996
    • /
    • 2007
  • In this paper, we describe a method that can recognize gestures by obtaining motion features information with principal factor analysis from sequential gesture images. In the algorithm, firstly, a two dimensional silhouette region including human gesture is segmented and then geometric features are extracted from it. Here, global features information which is selected as some meaningful key feature effectively expressing gestures with principal factor analysis is used. Obtained motion history information representing time variation of gestures from extracted feature construct one gesture subspace. Finally, projected model feature value into the gesture space is transformed as specific state symbols by grouping algorithm to be use as input symbols of HMM and input gesture is recognized as one of the model gesture with high probability. Proposed method has achieved higher recognition rate than others using only shape information of human body as in an appearance-based method or extracting features intuitively from complicated gestures, because this algorithm constructs gesture models with feature factors that have high contribution rate using principal factor analysis.

  • PDF

Analog active valve control design for non-linear semi-active resetable devices

  • Rodgers, Geoffrey W.;Chase, J. Geoffrey;Corman, Sylvain
    • Smart Structures and Systems
    • /
    • v.19 no.5
    • /
    • pp.487-497
    • /
    • 2017
  • Semi-active devices use the building's own motion to produce resistive forces and are thus strictly dissipative and require little power. Devices that independently control the binary open/closed valve state can enable novel device hysteresis loops that were not previously possible. However, some device hysteresis loops cannot be obtained without active analog valve control allowing slower, controlled release of stored energy, and is presents an ongoing limitation in obtaining the full range of possibilities offered by these devices. This in silico study develops a proportional-derivative feedback control law using a validated nonlinear device model to track an ideal diamond-shaped force-displacement response profile using active analog valve control. It is validated by comparison to the ideal shape for both sinusoidal and random seismic input motions. Structural application specific spectral analysis compares the performance for the non-linear, actively controlled case to those obtained with an ideal, linear model to validate that the potential performance will be retained when considering realistic nonlinear behaviour and the designed valve control approach. Results show tracking of the device force-displacement loop to within 3-5% of the desired ideal curve. Valve delay, rather than control law design, is the primary limiting factor, and analysis indicates a ratio of valve delay to structural period must be 1/10 or smaller to ensure adequate tracking, relating valve performance to structural period and overall device performance under control. Overall, the results show that active analog feedback control of energy release in these devices can significantly increase the range of resetable, valve-controlled semi-active device performance and hysteresis loops, in turn increasing their performance envelop and application space.

Study on the Time Dependent Stress-Strain Behavior of Clay (점성토의 시간의존적 응력 - 변형 특성에 관한 연구)

  • 지인택;강우묵
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.4
    • /
    • pp.134-153
    • /
    • 1988
  • This paper was carried out to investigate the existence of a unique stress- strain behavior by obtaining some factors influencing the time dependent stress- strain behavior of clay. The results obtained from this study were summarized as follows ; 1. The relationship between stress ratro and strain in normally consolidated clay was in- dependent on pre-shear consolidation pressure. Therefore, shear strain could be expressed as a function with stress ratio. 2. The constitutive equation of shear strain on Modified Carn Clay Model coincided better with the observed value than Cam Clay Model. 3. The relationships between deviator stress and shear strain, between pore water pressure and shear strain were unified by the mean equivalent pressure. 4. The shear strain contour in norrnally consolidated clay was increased linearly through origin, but that in overconsolidated clay was not in accordance with the result of the former. 5. Because the effective stress path of normally consolidated clay was unified by the mean equivalent pressure, state boundary surface in (e,p,q) space was transformed into two dimensional surface. But it was considered to be suitable that the unified stress- strain in overconsolidated clay be expressed by a function with overconsolidation ratio. 6. The deviator for constant strain was increased linearly with increment of strain rate ($\varepsilon$) on semi-log scale, but pore water pressure was decreased. 7. The behavior of stress relaxation was transformed from linear to curvilinear with inc - rement of strain rate before stress relaxation test, and pore water pressure was increased in total range. 8. The strain of creep was increased linearly with increment of time on semi-log scale. The greater the strain rate before creep test became, the greater the increment of strain of creep became. And the pore water pressure during creep test was increased generally with increment of time on semi-log scale.

  • PDF

Coupled Hydrological-mechanical Behavior Induced by CO2 Injection into the Saline Aquifer of CO2CRC Otway Project (호주 오트웨이 프로젝트 염수층 내 CO2 주입에 따른 수리-역학적 연계거동 분석)

  • Park, Jung-Wook;Shinn, Young Jae;Rutqvist, Jonny;Cheon, Dae-Sung;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.26 no.3
    • /
    • pp.166-180
    • /
    • 2016
  • The present study numerically simulated the CO2 injection into the saline aquifer of CO2CRC Otway pilot project and the resulting hydrological-mechanical coupled process in the storage site by TOUGH-FLAC simulator. A three-dimensional numerical model was generated using the stochastic geological model which was established based on well log and core data. It was estimated that the CO2 injection of 30,000t over a period of 200 days increased the pressure near the injection point by 0.5 MPa at the most. The pressure increased rapidly and tended to approach a certain value at an early stage of the injection. The hydrological and mechanical behavior observed from the CO2 flow, effective stress change and stress-strength ratio revealed that the CO2 injection into the saline aquifer under the given condition would not have significant effects on the mechanical safety of the storage site and the hydrological state around the adjacent fault.

Exploring the Stability of Predator-Prey Ecosystem in Response to Initial Population Density (초기 개체군 밀도가 포식자-피식자 생태계 안정성에 미치는 영향)

  • Cho, Jung-Hee;Lee, Sang-Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.3
    • /
    • pp.1-6
    • /
    • 2013
  • The ecosystem is the complex system consisting of various biotic and abiotic factors and the factors interact with each other in the hierarchical predator-prey relationship. Since the competitive relation spatiotemporally occurs, the initial state of population density and species distribution are likely to play an important role in the stability of the ecosystem. In the present study, we constructed a lattice model to simulate the three-trophic ecosystem (predatorprey- plant) and using the model, explored how the ecosystem stability is affected by the initial density. The size of lattice space was $L{\times}L$, (L=100) with periodic boundary condition. The initial density of the plant was arbitrarily set as the value of 0.2. The simulation result showed that predator and prey coexist when the density of predator is less than or equal to 0.4 and the density of prey is less than or equal to 0.5. On the other hand, when the predator density is more than or equal to 0.5 and the density of prey is more than or equal to 0.6, both of predator and prey were extinct. In addition, we found that the strong nonlinearity in the interaction between species was observed in the border area between the coexistence and extinction in the species density space.

Two-dimensional curved panel vibration and flutter analysis in the frequency and time domain under thermal and in-plane load

  • Moosazadeh, Hamid;Mohammadi, Mohammad M.
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.4
    • /
    • pp.345-372
    • /
    • 2021
  • The analysis of nonlinear vibrations, buckling, post-buckling, flutter boundary determination and post-flutter behavior of a homogeneous curved plate assuming cylindrical bending is conducted in this article. Other assumptions include simply-supported boundary conditions, supersonic aerodynamic flow at the top of the plate, constant pressure conditions below the plate, non-viscous flow model (using first- and third-order piston theory), nonlinear structural model with large deformations, and application of mechanical and thermal loads on the curved plate. The analysis is performed with constant environmental indicators (flow density, heat, Reynolds number and Mach number). The material properties (i.e., coefficient of thermal expansion and modulus of elasticity) are temperature-dependent. The equations are derived using the principle of virtual displacement. Furthermore, based on the definitions of virtual work, the potential and kinetic energy of the final relations in the integral form, and the governing nonlinear differential equations are obtained after fractional integration. This problem is solved using two approaches. The frequency analysis and flutter are studied in the first approach by transferring the handle of ordinary differential equations to the state space, calculating the system Jacobin matrix and analyzing the eigenvalue to determine the instability conditions. The second approach discusses the nonlinear frequency analysis and nonlinear flutter using the semi-analytical solution of governing differential equations based on the weighted residual method. The partial differential equations are converted to ordinary differential equations, after which they are solved based on the Runge-Kutta fourth- and fifth-order methods. The comparison between the results of frequency and flutter analysis of curved plate is linearly and nonlinearly performed for the first time. The results show that the plate curvature has a profound impact on the instability boundary of the plate under supersonic aerodynamic loading. The flutter boundary decreases with growing thermal load and increases with growing curvature.

Innovative Technology of Teaching Moodle in Higher Pedagogical Education: from Theory to Pactice

  • Iryna, Rodionova;Serhii, Petrenko;Nataliia, Hoha;Kushevska, Natalia;Tetiana, Siroshtan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.8
    • /
    • pp.153-162
    • /
    • 2022
  • Relevance. Innovative activities in education should be aimed at ensuring the comprehensive development of the individual and professional development of students. The main idea of modular technology is that the student should learn by himself, and the teacher manages his learning activities. The advantage of modular technology is the ability of the teacher to design the study of the material in the most interesting and accessible forms for this part of the study group and at the same time achieve the best learning results. Innovative Moodle technology. it is gaining popularity every day, significantly expanding the space of teaching and learning, allowing students to study inter-faculty university programs in depth. The purpose of this study is to assess the quality of implementation of the e-learning system Moodle. The study was conducted at the South Ukrainian National Pedagogical University named after K. D. Ushinsky in order to identify barriers to the effective implementation of innovative distance learning technologies Moodle and introduce a new model that will have a positive impact on the development of e-learning. Methodology. The paper used a combination of theoretical and empirical research methods. These include: scientific analysis of sources on this issue, which allowed us to formulate the initial provisions of the study; analysis of the results of students 'educational activities; pedagogical experiment; questionnaires; monitoring of students' activities in practical classes. Results. This article evaluates the implementation of the principles of distance learning in the process of teaching and learning at the University in terms of quality. The experiment involved 1,250 students studying at the South Ukrainian National Pedagogical University named after K. D. Ushinsky. The survey helped to identify the main barriers to the effective implementation of modern distance learning technologies in the educational process of the University: the lack of readiness of teachers and parents, the lack of necessary skills in applying computer systems of online learning, the inability to interact with the teaching staff and teachers, the lack of a sufficient number of academic consultants online. In addition, internal problems are investigated: limited resources, unevenly distributed marketing advantages, inappropriate administrative structure, and lack of innovative physical capabilities. The article allows us to solve these problems by gradually implementing a distance learning model that is suitable for any university, regardless of its specialization. The Moodle-based e-learning system proposed in this paper was designed to eliminate the identified barriers. Models for implementing distance learning in the learning process were built according to the CAPDM methodology, which helps universities and other educational service providers develop and manage world-class online distance learning programs. Prospects for further research focus on evaluating students' knowledge and abilities over the next six months after the introduction of the proposed Moodle-based program.