• Title/Summary/Keyword: A State Space Model

Search Result 931, Processing Time 0.026 seconds

Formulation of the Neural Network for Implicit Constitutive Model (II) : Application to Inelastic Constitutive Equations

  • Lee, Joon-Seong;Lee, Eun-Chul;Furukawa, Tomonari
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.4
    • /
    • pp.264-269
    • /
    • 2008
  • In this paper, two neural networks as a material model, which are based on the state-space method, have been proposed. One outputs the rates of inelastic strain and material internal variables whereas the outputs of the other are the next state of the inelastic strain and material internal variables. Both the neural networks were trained using input-output data generated from Chaboche's model and successfully converged. The former neural network could reproduce the original stress-strain curve. The neural network also demonstrated its ability of interpolation by generating untrained curve. It was also found that the neural network can extrapolate in close proximity to the training data.

Analysis of Switching Transient State characteristis Based on Space charge Overlapping Model (공간전하중첩 모델에 의한 스위칭과도장태 특성해석)

  • 정홍배;박창엽
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.18 no.2
    • /
    • pp.27-35
    • /
    • 1981
  • In this study, a numerical theory based on space charge overlapping model and experiments on the propriety of its theory were carried out to analyze the switching transient characteristic in amorphous coalcogenide thin film. Theoretical and experimental as well as analytical investigations were carried out on the switching behaviour in a transient state arising from a voltage pulse applied to amorphous chalcogenide thin films at room temperature. The results can be explained in terms ot a simple theoretical model of the electronic characteristics of switching. The injection of carriers are necessary to initiate the switching action and injected carriers contribute to the current flow as a space-charge limited current(SCLC) The proposed charge controlled switching characteristics can be explained by double injection space charge overlapping model.

  • PDF

A Balanced Model Reduction for Linear Parameter Varying Systems (시변 파라메터를 갖는 선형시스템의 균형화된 모델 간략화)

  • Yoo, Seog-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.5
    • /
    • pp.351-356
    • /
    • 2002
  • This papaer deals with a model reduction problem for linear systems with time varying parameters. For this problem, a controllability Grammian and an observability Grammian are introduced and computed by solving linear matrix inequalities. Using the controllability/observability Grammian, a balanced state space realization for linear parameter varying systems is obtained. From the balanced state space realization, a reduced model can be obtained by truncating not only states but also time varying parameters and an upper bound of the model reduction error is derived as well.

A Simulation of the Myocardium Activation Process using the Discrete Event Cell Space Model (DEVCS 모델을 사용한 심근 활성화과정의 시뮬레이션)

  • Kim Gwang-Nyeon;Jung Dong-Keun;Kim Gi-Ryon;Choi Byeong-Cheol;Lee Jung-Tae;Jeon Gye-Rok
    • Journal of the Korea Society for Simulation
    • /
    • v.13 no.4
    • /
    • pp.1-16
    • /
    • 2004
  • The modelling and simulation of the activation process for the heart system is meaningful to understand special excitatory and conductive system in the heart and to study cardiac functions because the heart activation conducts through this system. This thesis proposes two dimensional cellular automaton(CA) model for the activation process of the myocardium and conducted simulation by means of discrete time and discrete event algorithm. In the model, cells are classified into anatomically similar characteristic parts of the heart and each of cells has a set of cells with preassigned properties. Each cell in this model has state variables to represent the state of the cell and has some state transition rules to change values of state variables executed by state transition function. The state transition rule is simple as follows. First, the myocardium cell at rest stay in passive state. Second, if any one of neighborhood cell in the myocardium cell is active state then the state is change from passive to active state. Third, if cell's state is an active then automatically go to the refractory state after activation phase. Four, if cell's state is refractory then automatically go to the passive state after refractory phase. These state transition is processed repeatedly in all cells through the termination of simulation.

  • PDF

Dynamic Response of Coupled Maglev Train and Guideway System (자기부상열차-가이드웨이 통합 시스템의 동적 특성)

  • Kong, Eun-Ho;Kang, Bu-Byoung;Na, Sung-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.2
    • /
    • pp.137-145
    • /
    • 2011
  • This study is proposed to develop a numerical interaction model of the magnetically levitated(maglev) train and guideway. For this purpose, equation of motion for 6-DOF vehicle model, EMS, guideway and guideway irregularity are derived as the state-space equation. In order to solve the state space equations, the present work was performed via matlab simulation using Runge-Kutta method. Through the simulation, the effect of dynamic response of maglev system to different vehicle speeds, guideway rigidity(EI) and masses is investigated.

A Bayesian State-space Production Assessment Model for Common Squid Todarodes pacificus Stock Caught by Multiple Fisheries in Korean Waters (한국 해역의 살오징어(Todarodes pacificus) 개체군 자원평가를 위한 베이지안 상태공간 잉여생산량 모델의 적용)

  • An, Dongyoung;Kim, Kyuhan;Kang, Heejung;Hyun, Saang-Yoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.5
    • /
    • pp.769-781
    • /
    • 2021
  • Given data about the annual fishery yield of the common squid Todarodes pacificus, and the catch-per-unit-effort (CPUE) data from multiple fisheries from 2000-2018, we applied a Bayesian state - space assessment model for the squid population. One of our objectives was to do a stock assessment, simultaneously incorporating CPUE data from the following three fisheries, (i) large trawl, (ii) jigger, and (iii) large purse seine, which comprised on average a year about 65% of all fisheries, allowing possible correlations to be reflected. Other objectives were to consider both observation and process errors and to apply objective priors of parameters. The estimated annual exploitable biomass was in the range of 3.50×105 to 1.22×106 MT, the estimated intrinsic growth rate was 1.02, and the estimated carrying capacity was 1,151,259 MT. Comparison with available results from stock assessment of independently analyzed single fisheries revealed a large difference from the estimated values, suggesting that stock assessment based on multiple fisheries should be performed.

Assessing Stock Biomass and Analyzing Management Effects Regarding the Black Scraper (Thamnaconus modestus) Using Bayesian State-space Model (Bayesian state-space 모델을 이용한 말쥐치 자원평가 및 관리효과 분석)

  • Choi, Min-Je;Kim, Do-Hoon;Lee, Hae-Won;Seo, Young-Il;Lee, Sung-Il
    • Ocean and Polar Research
    • /
    • v.42 no.1
    • /
    • pp.63-76
    • /
    • 2020
  • This study sought to assess the stock status and analyze the management effects with regard to the Black scraper, which is one of the more commercially important species in Korea. The catch amounts of Black scraper have significantly decreased since 1991. In this analysis, a Bayesian state-space model was utilized to assess the biomass of the Black scraper given the limited data. Model results showed that MSY and BMSY of Black scraper were estimated to be 26,587 tons and 365,200 tons, respectively. In addition, the current biomass level of the Black scraper was assessed to be only 2.1% (7,549 tons) of BMSY. For this reason, the effects of a moratorium policy on the Black scraper were evaluated. The results showed that if such a moratorium policy was implemented, it would take at least 18-40 years to restore the biomass level of the Black scraper to BMSY depending upon its growth rates.

Bending and free vibration analysis of a smart functionally graded plate

  • Bian, Z.G.;Ying, J.;Chen, W.Q.;Ding, H.J.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.1
    • /
    • pp.97-113
    • /
    • 2006
  • A simply supported hybrid plate consisting of top and bottom functionally graded elastic layers and an intermediate actuating or sensing homogeneous piezoelectric layer is investigated by an elasticity (piezoelasticity) method, which is based on state space formulations. The general spring layer model is adopted to consider the effect of bonding adhesives between the piezoelectric layer and the two functionally graded ones. The two functionally graded layers are inhomogeneous along the thickness direction, which are approached by laminate models. The effect of interlaminar bonding imperfections on the static bending and free vibration of the smart plate is discussed in the numerical examples.

Control of Grade Change Operations in Paper Plants Using Model Predictive Control Method (모델예측제어 기법을 이용한 제지공정에서의 지종교체 제어)

  • Kim, Do-Hoon;Yeo, Young-Gu;Park, Si-Han;Kang, Hong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.4
    • /
    • pp.48-56
    • /
    • 2003
  • In this work an integrated model for paper plants combining wet-end and dry section is developed and a model predictive control scheme based on the plant model is proposed. Closed-loop process identification method is employed to produce a state-space model. Thick stock, filler flow, machine speed and steam pressure are selected as input variables and basis weight, ash content and moisture content are considered as output variables. The desired output trajectory is constructed in the form of 1st-order dynamics. Results of simulations for control of grade change operations are compared with plant operation data collected during the grade change operations under the same conditions as in simulations. From the comparison, we can see that the proposed model predictive control scheme reduces the grade change time and achieves stable steady-state.

Shape model and spin state of non-principal axis rotator (5247) Krylov

  • Lee, Hee-Jae;Durech, Josef;Kim, Myung-Jin;Moon, Hong-Kyu;Kim, Chun-Hwey
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.45.2-45.2
    • /
    • 2019
  • The main-belt asteroid (5247) Krylov is known as a Non-Principal Axis (NPA) rotator. However, the shape model and spin state of this asteroid were not revealed. The physical model of an asteroid including spin state and shape is regarded to be important to understand its physical properties and dynamical evolution. Thus, in order to reconstruct the physical model of Kryolv, we applied the light curve inversion method using not only the optical light curves observed with ground-based telescopes in three apparitions during 2006, 2016, and 2017, but also the infrared light curves obtained with the Wide-field Infrared Survey Explorer (WISE) in 2010. We found that it is rotating in Short Axis Mode (SAM) with the rotation and precession periods of 368.71 hr and 67.277 hr, respectively. The orientation of the angular momentum vector is (298°, -58°) in the ecliptic coordinate system. The ratio of moments of inertia of the longest axis to the shortest axis is Ia/Ic = 0.36; the ratio of moments of inertia of the intermediate axis to the shortest axis is Ib/Ic = 0.96. Finally, the excitation level of this asteroid is found to be rather low with a ratio of the rotational kinetic energy to the basic spin state energy as E/E0 ≃ 1.024. We will briefly discuss the possible evolutionary process of Krylov in this presentation.

  • PDF