• Title/Summary/Keyword: A/A Reactor System

Search Result 2,645, Processing Time 0.033 seconds

Integral effect test for steam line break with coupling reactor coolant system and containment using ATLAS-CUBE facility

  • Bae, Byoung-Uhn;Lee, Jae Bong;Park, Yu-Sun;Kim, Jongrok;Kang, Kyoung-Ho
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2477-2487
    • /
    • 2021
  • To improve safety analysis technology for a nuclear reactor containment considering an interaction between a reactor coolant system (RCS) and containment, this study aims at an experimental investigation on the integrated simulation of the RCS and containment, with an integral effect test facility, ATLAS-CUBE. For a realistic simulation of a pressure and temperature (P/T) transient, the containment simulation vessel was designed to preserve a volumetric scale equivalently to the RCS volume scale of ATLAS. Three test cases for a steam line break (SLB) transient were conducted with variation of the initial condition of the passive heat sink or the steam flow direction. The test results indicated a stratified behavior of the steam-gas mixture in the containment following a high-temperature steam injection in prior to the spray injection. The test case with a reduced heat transfer on the passive heat sink showed a faster increase of the P/T inside the containment. The effect of the steam flow direction was also investigated with respect to a multi-dimensional distribution of the local heat transfer on the passive heat sink. The integral effect test data obtained in this study will contribute to validating the evaluation methodology for mass and energy (M/E) and P/T transient of the containment.

Analysis and comparison of the 2D/1D and quasi-3D methods with the direct transport code SHARK

  • Zhao, Chen;Peng, Xingjie;Zhang, Hongbo;Zhao, Wenbo;Li, Qing;Chen, Zhang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.19-29
    • /
    • 2022
  • The 2D/1D method has become the mainstream of the direct transport calculation considering the balance of accuracy and efficiency. However, the 2D/1D method still suffers from stability issues. Recently, a quasi-3D method has been proposed with axial Legendre expansion. Analysis and comparison of the 2D/1D and quasi-3D method is conducted in theory from the equation derivation. Besides, the C5G7 benchmark, the KUCA benchmark and the macro BEAVRS benchmark are calculated to verify the theory comparisons of these two methods with the direct transport code SHARK. All results show that the quasi-3D method has better stability and accuracy than the 2D/1D method with worse efficiency and memory cost. It provides a new option for direct transport calculation with the quasi-3D method.

A Study on the Distribution of Nitrite Oxidation Microorganisms in a Biofilm Reactor

  • Yoon, Joung-Yee;Kim, Sun-Hee;Kim, Dong-Jin
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.282-286
    • /
    • 2005
  • Biofilm airlift reactor was continuously operated to investigate the competitions between the autotrophs and heterotrophs, ammonia oxidizers and nitrite oxidizers, and Nitrobacter and Nitrospira with real wastewater at a C/N ratio of 0.86. As the reactor achieved complete nitrification microbial distribution was analyzed by FISH/CLSM technique. The results showed that heterotroph was more abundant than nitrifying bacteria. Ammonia oxidizers (17%) and Nitrobacter (7%) prevailed nitrite oxidizers (9%) and Nitrospira (2%), respectively.

  • PDF

A Case Study of the Commom Cause Failure Analysis of Digital Reactor Protection System (디지털 원자로 보호시스템의 공통원인고장 분석에 관한 사례연구)

  • Kong, Myung-Bock;Lee, Sang-Yong
    • IE interfaces
    • /
    • v.25 no.4
    • /
    • pp.382-392
    • /
    • 2012
  • Reactor protection system to keep nuclear safety and operational economy of plants requires high reliability. Such a high reliability of the system can be achieved through the redundant design of components. However, common cause failures of components reduce the benefits of redundant design. Thus, the common cause failure analysis, to accurately calculate the reliability of the reactor protection system, is carried out using alpha-factor model. Analysis results to 24 operating months are that 1) the system reliability satisfies the reliability goal of EPRI-URD and 2) the common cause failure contributes 90% of the system unreliability. The uncertainty analysis using alpha factor parameters of 0.05 and 0.95 quantile values shows significantly large difference in the system unreliability.

Feasibility Study of Beta Detector for Small Leak Detection inside the Reactor Containment

  • Jang, JaeYeong;Schaarschmidt, Thomas;Kim, Yong Kyun
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.4
    • /
    • pp.154-159
    • /
    • 2018
  • Background: To prevent small leakage accidents, a real-time and direct detection system for small leaks with a detection limit below that of existing systems, e.g. $0.5gpm{\cdot}hr^{-1}$, is required. In this study, a small-size beta detector, which can be installed inside the reactor containment (CT) building and detect small leaks directly, was suggested and its feasibility was evaluated using MCNPX simulation. Materials and Methods: A target nuclide was selected through analysis of radiation from radionuclides in the reactor coolant system (RCS) and the spectrum was obtained via a silicon detector simulated in MCNPX. A window was designed to reduce the background signal caused by other nuclides. The sensitivity of the detector was also estimated, and its shielding designed for installation inside the reactor CT. Results and Discussion: The beta and gamma spectrum of the silicon detector showed a negligible gamma signal but it also contained an undesired peak at 0.22 MeV due to other nuclides, not the $^{16}N$ target nuclide. Window to remove the peak was derived as 0.4 mm for beryllium. The sensitivity of silicon beta detector with a beryllium window of 1.7 mm thickness was derived as $5.172{\times}10^{-6}{\mu}Ci{\cdot}cc^{-1}$. In addition, the specification of the shielding was evaluated through simulations, and the results showed that the integrity of the silicon detector can be maintained with lead shielding of 3 cm (<15 kg). This is a very small amount compared to the specifications of the lead shielding (600 kg) required for installation of $^{16}N$ gamma detector in inside reactor CT, it was determined that beta detector would have a distinct advantage in terms of miniaturization. Conclusion: The feasibility of the beta detector was evaluated for installation inside the reactor CT to detect small leaks below $0.5gpm{\cdot}hr^{-1}$. In future, the design will be optimized on specific data.

Development of Reactor Vessel Head Penetration Performance Demonstration System in Korea (국내 원자로 상부헤드관통관 기량검증 기술개발)

  • Kim, Yongsik;Yoon, Byungsik;Yang, Seunghan
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.44-50
    • /
    • 2014
  • There were many flaw issues of reactor vessel head penetration in USA fleets. USNRC issued 10CFR50.55a to implement reactor vessel head penetration ultrasonic examination performance demonstration(PD) in US for enhancement of inspection reliability. After September 2009, all US utilities inspected their RVHP with PD qualified system. Korea Hydro and Nuclear Power Company(KHNP) have developed reactor vessel head penetration performance demonstration system for ultrasonic test to apply for pressurized light-water reactor power plants in accordance with 10CFR50.55a since September 2011. RVHP configuration surveying and analysis, code requirement analysis, and performance demonstration specimen design were performed up to this day. Fingerprinting of manufactured specimen, development of test data management program, development of operation procedure, input of flawed data, and development of final report will be performed for the next step. This paper describes the development status of the performance demonstration system for reactor vessel head penetration ultrasonic examination in Korea.

The Nutrients Removal in Aerobic High Rate Ponds Through the Lighting Period (빛의 조사기간으로 본 호기성 고율 안정조 프로세스의 영양물질 제거)

  • 공석기
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.1
    • /
    • pp.83-91
    • /
    • 1996
  • It is not too much to say that the territorial inhabitants' concerns are wholly c concentrated on the environmental preservation-problem and development-problem in Korea given effect to the local self-government system. At a time like this I was studied the effect on nutrients removal through lighting period in aerobic high rate pond and we know that waste stabilization pond method is the most economical and energy saving wastewater treatment technology than others. At the results which was studied through operating the reactor-l artifically main-tained at a temperature, $25^{\circ}C$, a light intensity, 3000lux, and a lighting period, 24hrs and the reactor-2 artifically maintained at a tern야rature, $25^{\circ}C$ and a light intensity 3000lux, and a lighting period period, 12hrs, It has appeared for 24hrs.-lighting period -reactor-1 to be prior to the reactor-2. The attained results are that 1. reactor-1 is prior to reactor-2 on oxygen-generation 2. reactor-1 is prior to reactor-2 on algal production 3. COD removal efficiency, 90.76%, T-N removal efficiency, 80%, T-P removal e efficiency, 74.47 % in reactor-2, in reactor-1 COD removal efficiency, 94.85 %, T-N removal efficiency, 98.07%, T-P removal efficiency, 72.13% are, so the treatment efficiency of reactor-1 is more excellent than things of reactor-2 4. it appeared that the detention time is 8, 9days.

  • PDF

Structural Concept Design of KALIMER-600 Sodium Cooled Fast Reactor (소듐냉각 고속로 KALIMER-600 원자로 구조 개념설계)

  • Lee, Jae-Han;Park, Chang-Gyu;Kim, Jong-Bum;Koo, Gyeong-Hoi
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.285-290
    • /
    • 2007
  • KALIMER-600 is a sodium cooled fast reactor with a fast spectrum neutron reactor core. The NSSS design has three heat transport systems of a PHTS (Primary Heat Transport System), a IHTS (Intermediate Heat Transport System) and a SGS (Steam Generation System). PHTS is a pool type and has a large amount of sodium in the pool. The mechanical design targets are maintaining the enough structural integrity for a seismic load of SSE 0.3g and the thermal and mechanical loads by the high temperature environments and an economical competitiveness when compared with other reactor types.

  • PDF

Numerical simulation of localization of a sub-assembly with failed fuel pins in the prototype fast breeder reactor

  • Abhitab Bachchan;Puspendu Hazra;Nimala Sundaram;Subhadip Kirtan;Nakul Chaudhary;A. Riyas;K. Devan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3648-3658
    • /
    • 2023
  • The early localization of a fuel subassembly with a failed (wet rupture) fuel pin is very important in reactors to limit the associated radiological and operational consequences. This requires a fast and reliable system for failure detection and their localization in the core. In the Prototype Fast Breeder Reactor, the system specially designed for this purpose is Failed Fuel Location Modules (FFLM) housed in the control plug region. It identifies a failed sub-assembly by detecting the presence of delayed neutrons in the sodium from a failed sub-assembly. During the commissioning phase of PFBR, it is mandatory to demonstrate the FFLM effectiveness. The paper highlights the engineering and physics design aspects of FFLM and the integrated simulation towards its function demonstration with a source assembly containing a perforated metallic fuel pin. This test pin mimics a MOX pin of 1 cm2 of geometrical defect area. At 10% power and 20% sodium flow rate, the counts rate in the BCCs of FFLM system range from 75 cps to 145 cps depending upon the position of DN source assembly. The model developed for the counts simulation is applicable to both metal and MOX pins with proper values of k-factor and escape coefficient.

A Study on the Use of an Immobilized-Cell Acidogenic Reactor for the High Rate Digestion of a Distillery Wastewater (유기산 생산 세균을 고정화학 2상 메탄발효조에 의한 주정 폐수의 고효율 소화)

  • 배재근;고종호;김병홍
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.4
    • /
    • pp.407-414
    • /
    • 1994
  • Anaerobic fermentative bacteria were isolated from the acidogenic reactor of a labora- tory scale 2-stage anaerobic digestor. The isolate 1-6 was selected for its ablity to produce more fatty acids from distillery wastewater than others, and was identified as a strain of Clostridium. The isolate Clostridium sp. 1-6 is a thermophilic bacterium growing at 55$\circ$c , and grew best at pH 5.5. An acidogenic reactor using immobilized cells of the isolate Clostridium sp. 1-6 removed about 15% of COD from distillery wastwater as hydrogen, producing about 50 mM butyrate and about 10 mM acetate, when the reactor was operated at the hydraulic retention time(HRT) of 0.8 hr. It is proposed that this system can be used to convert the distillery wastewater to hydrogen and butyrate. More than 90% of COD was removed from the wastewater by anaerobic digestion using a 2-stage digestor consisting of a UASB methanogenic reactor and an acidogenic reactor of the immobilized cells of isolate Clostridium sp. 1-6.

  • PDF