• Title/Summary/Keyword: A* algorithm

Search Result 54,193, Processing Time 0.056 seconds

A Study on the Interpolation Algorithm to Improve the Blurring of Magnified Image (확대 영상의 몽롱화 현상을 제거하기 위한 보간 알고리즘 연구)

  • Lee, Jun-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.562-569
    • /
    • 2010
  • This paper analyzes the problems that occurred in the magnification process for a fine input image and investigates a method to improve the blurring of magnified image. This paper applies a curve interpolation algorithm in CAD/CAM for the same test images with the existing image algorithm in order to improve the blurring of magnified image. As a result, the nearest neighbor interpolation, which is the most frequently applied algorithm for the existing image interpolation algorithm, shows that the identification of a magnified image is not possible. Therefore, this study examines an interpolation of gray-level data by applying a low-pass spatial filter and verifies that a bilinear interpolation presents a lack of property that accentuates the boundary of the image where the image is largely changed. The periodic B-spline interpolation algorithm used for curve interpolation in CAD/CAM can remove the blurring but shows a problem of obscuration, and the Ferguson' curve interpolation algorithm shows a more sharpened image than that of the periodic B-spline algorithm. For the future study, hereafter, this study will develop an interpolation algorithm that has an excellent improvement for the boundary of the image and continuous and flexible property by using the NURBS, Ferguson' complex surface, and Bezier surface used in CAD/CAM engineering based on the results of this study.

A NODE PREDICTION ALGORITHM WITH THE MAPPER METHOD BASED ON DBSCAN AND GIOTTO-TDA

  • DONGJIN LEE;JAE-HUN JUNG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.27 no.4
    • /
    • pp.324-341
    • /
    • 2023
  • Topological data analysis (TDA) is a data analysis technique, recently developed, that investigates the overall shape of a given dataset. The mapper algorithm is a TDA method that considers the connectivity of the given data and converts the data into a mapper graph. Compared to persistent homology, another popular TDA tool, that mainly focuses on the homological structure of the given data, the mapper algorithm is more of a visualization method that represents the given data as a graph in a lower dimension. As it visualizes the overall data connectivity, it could be used as a prediction method that visualizes the new input points on the mapper graph. The existing mapper packages such as Giotto-TDA, Gudhi and Kepler Mapper provide the descriptive mapper algorithm, that is, the final output of those packages is mainly the mapper graph. In this paper, we develop a simple predictive algorithm. That is, the proposed algorithm identifies the node information within the established mapper graph associated with the new emerging data point. By checking the feature of the detected nodes, such as the anomality of the identified nodes, we can determine the feature of the new input data point. As an example, we employ the fraud credit card transaction data and provide an example that shows how the developed algorithm can be used as a node prediction method.

A Protection Algorithm Discriminating Between Internal and External Faults for Wind Farms (풍력발전단지 보호를 위한 내외부 고장 판별 알고리즘)

  • Kwon, Young-Jin;Kang, Sang-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.854-859
    • /
    • 2007
  • A wind farm consists of many wind generator(WG)s therefore, it is generally a complex power system. A wind farm as a distributed generation(DG) affects utility power system. If a conventional protection schemes are applied, it is difficult to detect faults correctly and the schemes can't provide proper coordination in some cases. This paper presents a protection algorithm for a wind farm which consists of a looped collection circuit. Because the proposed algorithm can distinguish between an internal fault and an external fault in a wind farm, The proposed algorithm can disconnect the faulted section in a wind farm. This algorithm is based on an overcurrent protection technique with the change of the ratio of the output current of a generator to the current of the looped line connected to each generator to collect the each generator's power. In addition, operating time of the algorithm is shortened by using the voltage drop at a generator collection point. The performance of the proposed algorithm was verified under various fault conditions using PSCAD/EMTDC simulations.

Hybrid Optimization Techniques Using Genetec Algorithms for Auto-Tuning Fuzzy Logic Controllers (유전 알고리듬을 이용한 자동 동조 퍼지 제어기의 하이브리드 최적화 기법)

  • Ryoo, Dong-Wan;Lee, Young-Seog;Park, Youn-Ho;Seo, Bo-Hyeok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.1
    • /
    • pp.36-43
    • /
    • 1999
  • This paper proposes a new hybrid genetic algorithm for auto-tuning fuzzy controllers improving the performance. In general, fuzzy controllers use pre-determined moderate membership functions, fuzzy rules, and scaling factors, by trial and error. The presented algorithm estimates automatically the optimal values of membership functions, fuzzy rules, and scaling factors for fuzzy controllers, using a hybrid genetic algorithm. The object of the proposed algorithm is to promote search efficiency by the hybrid optimization technique. The proposed hybrid genetic algorithm is based on both the standard genetic algorithm and a modified gradient method. If a maximum point is not be changed around an optimal value at the end of performance during given generation, the hybrid genetic algorithm searches for an optimal value using the the initial value which has maximum point by converting the genetic algorithms into the MGM(Modified Gradient Method) algorithms that reduced the number of variables. Using this algorithm is not only that the computing time is faster than genetic algorithm as reducing the number of variables, but also that can overcome the disadvantage of genetic algoritms. Simulation results verify the validity of the presented method.

  • PDF

Triangulation of Voronoi Faces of Sphere Voronoi Diagram using Delaunay Refinement Algorithm (딜러니 개선 알고리듬을 이용한 삼차원 구의 보로노이 곡면 삼각화)

  • Kim, Donguk
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.123-130
    • /
    • 2018
  • Triangulation is one of the fundamental problems in computational geometry and computer graphics community, and it has huge application areas such as 3D printing, computer-aided engineering, surface reconstruction, surface visualization, and so on. The Delaunay refinement algorithm is a well-known method to generate quality triangular meshes when point cloud and/or constrained edges are given in two- or three-dimensional space. In this paper, we propose a simple but efficient algorithm to triangulate Voronoi surfaces of Voronoi diagram of spheres in 3-dimensional Euclidean space. The proposed algorithm is based on the Ruppert's Delaunay refinement algorithm, and we modified the algorithm to be applied to the triangulation of Voronoi surfaces in two ways. First, a new method to deciding the location of a newly added vertex on the surface in 3-dimensional space is proposed. Second, a new efficient but effective way of estimating approximation error between Voronoi surface and triangulation. Because the proposed algorithm generates a triangular mesh for Voronoi surfaces with guaranteed quality, users can control the level of quality of the resulting triangulation that their application problems require. We have implemented and tested the proposed algorithm for random non-intersecting spheres, and the experimental result shows the proposed algorithm produces quality triangulations on Voronoi surfaces satisfying the quality criterion.

THE STUDY OF OPTIMAL BUFFER ALLOCATION IN FMS USING GENETIC ALGORITHM AND SIMULATION

  • Lee, Youngkyun;Kim, Kyungsup;Park, Joonho
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.263-268
    • /
    • 2001
  • In this paper, we present a new heuristic algorithm fur buffer allocation in FMS (Flexible Manufacturing System). It is conducted by using a genetic algorithm and simulation. First, we model the system by using a simulation software, \"Arena\". Then, we apply a genetic algorithm to achieve an optimal solution. VBA blocks, which are kinds of add-in functions in Arena, are used to connect Arena with the genetic algorithm. The system being modeled has seven workstations, one loading/unloading station, and three AGVs (Automated Guided Vehicle). Also it contains three products, which each have their own machining order and processing times. We experimented with two kinds of buffer allocation problems with a proposed heuristic algorithm, and we will suggest a simple heuristic approach based on processing times and workloads to validate our proposed algorithm. The first experiment is to find a buffer profile to achieve the maximum throughput using a finite number of buffers. The second experiment is to find the minimum number of buffers to achieve the desired throughput. End of this paper, we compare the result of a proposed algorithm with the result of a simple buffer allocation heuristic based on processing times and workloads. We show that the proposed algorithm increase the throughput by 7.2%.t by 7.2%.

  • PDF

Development of a Washout Algorithm for a Vehicle Driving Simulator Using New Tilt Coordination and Return Mode

  • You Ki Sung;Lee Min Cheol;Kang Eugene;Yoo Wan Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.272-282
    • /
    • 2005
  • A vehicle driving simulator is a virtual reality device which makes a man feel as if he drove an actual vehicle. Unlike actual vehicles, the simulator has limited kinematical workspace and bounded dynamic characteristics. So it is difficult to simulate dynamic motions of a multi-body vehicle model. In order to overcome these problems, a washout algorithm which controls the workspace of the simulator within the kinematical limitation is needed. However, a classical washout algorithm contains several problems such as generation of wrong sensation of motions by filters in tilt coordination, requirement of trial and error method in selecting the proper cut-off frequencies and difficulty in returning the simulator to its origin using only high pass filters. This paper proposes a washout algorithm with new tilt coordination method which gives more accurate sensations to drivers. To reduce the time in returning the simulator to its origin, an algorithm that applies selectively onset mode from high pass filters and return mode from error functions is proposed. As a result of this study, the results of the proposed algorithm are compared with the results of classical washout algorithm through the human perception models. Also, the performance of the suggested algorithm is evaluated by using human perception and sensibility of some drivers through experiments.

Application of Curve Interpolation Algorithm in CAD/CAM to Remove the Blurring of Magnified Image

  • Lee Yong-Joong
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.115-124
    • /
    • 2005
  • This paper analyzes the problems that occurred in the magnification process for a fine input image and investigates a method to improve the problems. This paper applies a curve interpolation algorithm in CAD/CAM for the same test images with the existing image algorithm in order to improve the problems. As a result. the nearest neighbor interpolation. which is the most frequently applied algorithm for the existing image interpolation algorithm. shows that the identification of a magnified image is not possible. Therefore. this study examines an interpolation of gray-level data by applying a low-pass spatial filter and verifies that a bilinear interpolation presents a lack of property that accentuates the boundary of the image where the image is largely changed. The periodic B-spline interpolation algorithm used for curve interpolation in CAD/CAM can remove the blurring but shows a problem of obscuration, and the Ferguson's curve interpolation algorithm shows a more sharpened image than that of the periodic B-spline algorithm. For the future study, hereafter. this study will develop an interpolation algorithm that has an excel lent improvement for the boundary of the image and continuous and flexible property by using the NURBS. Ferguson's complex surface. and Bezier surface used in CAD/CAM engineering based on. the results of this study.

  • PDF

Temperature Setpoint Algorithm for the Cooling System of a Tilting Train Main Transformer (틸팅열차 주변압기 냉각시스템의 온도설정알고리즘)

  • Han, Do-Young;Noh, Hee-Jeon;Won, Jae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.387-392
    • /
    • 2008
  • In order to improve the efficiency of the main transformer in a tilting train, the optimal operation of a cooling system is necessary. For the development of the optimal control algorithm of a cooling system, the mathematical model of a main transformer cooling system was developed. This includes the dynamic model of a main transformer, an oil pump, an oil cooler and a blower. The system algorithm of a cooling system, which consists of the temperature setpoint algorithm and the temperature control algorithm, was developed. Optimal oil temperatures of the inlet and the outlet of the main transformer were obtained by considering the total electric power consumption of the system. The oil inlet temperature was controlled by the blower and the oil outlet temperature was controlled by the oil pump. A simulation program was developed by using the mathematical model and the system algorithm. Simulation results showed that the system algorithm developed from this study may be effectively used to control the main transformer cooling system in a tilting train.

  • PDF

A New Fast Motion Estimation Algorithm Based on Block Sum Pyramid Algorithm

  • Jung, Soo-Mok
    • Journal of the Korea Computer Industry Society
    • /
    • v.5 no.1
    • /
    • pp.147-156
    • /
    • 2004
  • In this paper, a new fast motion estimation algorithm which is based on the Block Sum Pyramid Algorithm(BSPA) is presented. The Spiral Diamond Mesh Search scheme and Partial Distortion Elimination scheme of Efficient Multi-level Successive Elimination Algorithm were improved and then the improved schemes were applied to the BSPA. The motion estimation accuracy of the proposed algorithm is nearly 100% and the cost of Block Sum Pyramid Algorithm was reduced in the proposed algorithm. The efficiency of the proposed algorithm was verified by experimental results.

  • PDF