• Title/Summary/Keyword: A(p)-operator

Search Result 476, Processing Time 0.028 seconds

THE APPLICATION OF STOCHASTIC ANALYSIS TO COUNTABLE ALLELIC DIFFUSION MODEL

  • Choi, Won
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.2
    • /
    • pp.337-345
    • /
    • 2004
  • In allelic model X = ($\chi_1\chi$_2ㆍㆍㆍ, \chi_d$), M_f(t) = f(p(t)) - ${{\int^t}_0}\;Lf(p(t))ds$ is a P-martingale for diffusion operator L under the certain conditions. In this note, we can show existence and uniqueness of solution for stochastic differential equation and martingale problem associated with mean vector. Also, we examine that if the operator related to this martingale problem is connected with Markov processes under certain circumstance, then this operator must satisfy the maximum principle.

ON A LIMIT CLASS OF LORENTZ OPERATOR IDEALS

  • Song, Hi Ja
    • Korean Journal of Mathematics
    • /
    • v.11 no.2
    • /
    • pp.93-109
    • /
    • 2003
  • We give an extensive presentation of results about the behaviour of the approximation operator ideals $\mathcal{L}_{{\infty},q}$ in connection with the Lorentz operator ideals $\mathcal{L}_{p,q}$.

  • PDF

Sandwich Results for Certain Subclasses of Multivalent Analytic Functions Defined by Srivastava-Attiya Operator

  • Aouf, M.K.;Shamandy, A.;Mostafa, A.O.;Adwan, Eman A.
    • Kyungpook Mathematical Journal
    • /
    • v.52 no.2
    • /
    • pp.209-222
    • /
    • 2012
  • In this paper, we obtain some applications of first order differential subordination and superordination results involving the operator $J_{s,b}^{{\lambda},p}$ for certain normalized p-valent analytic functions associated with that operator.

GENERALIZING HARDY TYPE INEQUALITIES VIA k-RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL OPERATORS INVOLVING TWO ORDERS

  • Benaissa, Bouharket
    • Honam Mathematical Journal
    • /
    • v.44 no.2
    • /
    • pp.271-280
    • /
    • 2022
  • In this study, We have applied the right operator k-Riemann-Liouville is involving two orders α and β with a positive parameter p > 0, further, the left operator k-Riemann-Liouville is used with the negative parameter p < 0 to introduce a new version related to Hardy-type inequalities. These inequalities are given and reversed for the cases 0 < p < 1 and p < 0. We then improved and generalized various consequences in the framework of Hardy-type fractional integral inequalities.

THE APPLICATION OF STOCHASTIC ANALYSIS TO POPULATION GENETICS MODEL

  • Choi, Won
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.455-460
    • /
    • 2007
  • In allelic model $X=(x_1,\;x_2,\;{\cdots},\;x_d)$, $$M_f(t)=f(p(t))-{\int}_0^t\;Lf(p(t))ds$$ is a P-martingale for diffusion operator L under the certain conditions. In this note, we try to apply diffusion processes for countable-allelic model in population genetic model and we can define a new diffusion operator $L^*$. Since the martingale problem for this operator $L^*$ is related to diffusion processes, we can define a integral which is combined with operator $L^*$ and a bilinar form $<{\cdot},{\cdot}>$. We can find properties for this integral using maximum principle.

ON p, q-DIFFERENCE OPERATOR

  • Corcino, Roberto B.;Montero, Charles B.
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.3
    • /
    • pp.537-547
    • /
    • 2012
  • In this paper, we define a $p$, $q$-difference operator and obtain an explicit formula which is used to express the $p$, $q$-analogue of the unified generalization of Stirling numbers and its exponential generating function in terms of the $p$, $q$-difference operator. Explicit formulas for the non-central $q$-Stirling numbers of the second kind and non-central $q$-Lah numbers are derived using the new $q$-analogue of Newton's interpolation formula. Moreover, a $p$, $q$-analogue of Newton's interpolation formula is established.

WEYL@S THEOREMS FOR POSINORMAL OPERATORS

  • DUGGAL BHAGWATI PRASHAD;KUBRUSLY CARLOS
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.529-541
    • /
    • 2005
  • An operator T belonging to the algebra B(H) of bounded linear transformations on a Hilbert H into itself is said to be posinormal if there exists a positive operator $P{\in}B(H)$ such that $TT^*\;=\;T^*PT$. A posinormal operator T is said to be conditionally totally posinormal (resp., totally posinormal), shortened to $T{\in}CTP(resp.,\;T{\in}TP)$, if to each complex number, $\lambda$ there corresponds a positive operator $P_\lambda$ such that $|(T-{\lambda}I)^{\ast}|^{2}\;=\;|P_{\lambda}^{\frac{1}{2}}(T-{\lambda}I)|^{2}$ (resp., if there exists a positive operator P such that $|(T-{\lambda}I)^{\ast}|^{2}\;=\;|P^{\frac{1}{2}}(T-{\lambda}I)|^{2}\;for\;all\;\lambda)$. This paper proves Weyl's theorem type results for TP and CTP operators. If $A\;{\in}\;TP$, if $B^*\;{\in}\;CTP$ is isoloid and if $d_{AB}\;{\in}\;B(B(H))$ denotes either of the elementary operators $\delta_{AB}(X)\;=\;AX\;-\;XB\;and\;\Delta_{AB}(X)\;=\;AXB\;-\;X$, then it is proved that $d_{AB}$ satisfies Weyl's theorem and $d^{\ast}_{AB}\;satisfies\;\alpha-Weyl's$ theorem.

GLOBAL W1,2p ESTIMATES FOR NONDIVERGENCE PARABOLIC OPERATORS WITH POTENTIALS SATISFYING A REVERSE HÖLDER CONDITION

  • Pan, Guixia;Tang, Lin
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.5
    • /
    • pp.1357-1377
    • /
    • 2017
  • In this article, we first give the $L^p$ boundedness of the operator $D^2L^{-1}$ with BMO coefficients and a potential V satisfying an appropriate reverse $H{\ddot{o}}lder$ condition, then obtain global $W^{1,2}_p$ estimates for the nondivergence parabolic operator L with VMO coefficients and a potential V satisfying an appropriate reverse $H{\ddot{o}}lder$ condition.

NOTES ON THE BERGMAN PROJECTION TYPE OPERATOR IN ℂn

  • Choi, Ki-Seong
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.1
    • /
    • pp.65-74
    • /
    • 2006
  • In this paper, we will define the Bergman projection type operator Pr and find conditions on which the operator Pr is bound-ed on $L^p$(B, dv). By using the properties of the Bergman projection type operator Pr, we will show that if $f{\in}L_a^p$(B, dv), then $(1-{\parallel}{\omega}{\parallel}^2){\nabla}f(\omega){\cdot}z{\in}L^p(B,dv)$. We will also show that if $(1-{\parallel}{\omega}{\parallel}^2)\; \frac{{\nabla}f(\omega){\cdot}z}{},\;{\in}L^p{B,\;dv),\;then\;f{\in}L_a^p(B,\;dv)$.