• Title/Summary/Keyword: 90nm-gate

Search Result 22, Processing Time 0.117 seconds

Characteristics of C-V for Double gate MOSFET (Double gate MOSFET의 C-V 특성)

  • 나영일;김근호;고석웅;정학기;이재형
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.777-779
    • /
    • 2003
  • In this paper, we have investigated Characteristics of C-V for Double gate MOSFET with main gate and side gate. DG MOSFET has the main gate length of 50nm and the side gate length of 70nm. We have investigated characteristics of C-V and main gate voltage is changed from -5V to +5V. Also we have investigated characteristics of C-V for DG MOSFET when the side gate length is changed from 40nm to 90nm. As the side gate length is reduced, the transconductance is increased and the capacitance is reduced. When the side gate voltage is 3V, we know that C-V curves are bending at near the main gate voltage of 1.8V. We have simulated using ISE-TCAD tool for characteristics analysis of device.

  • PDF

Surface Roughness Evolution of Gate Poly Silicon with Rapid Thermal Annealing (미세게이트용 폴리실리콘의 쾌속 열처리에 따른 표면조도 변화)

  • Song, Oh-Sung;Kim, Sang-Yeop
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.3
    • /
    • pp.261-264
    • /
    • 2005
  • The 90 nm gate pattern technology have been virtualized by employing the hard mask and the planarization of fate poly silicon. We fabricated 70nm poly-Si on $200 nm-SiO_2/p-Si(100)$ substrates using low pressure chemical vapor deposition (LPCVD) to investigate roughness evolution by varying rapid annealing temperatures. The samples were annealed at the temperatures of $700^{\circ}C\~1100^{\circ}C$ for 40 seconds with a rapid thermal annealer. The surface image and the surface roughness were measured by a field emission scanning electron microscopy (FESEM) and an atomic force microscopy (AFM), respectively. The poly silicon surface became more rough as temperature increased due to surface agglomeration. The optimum conditions of poly silicon planarization were achieved by annealed at $700^{\circ}C$ for 40 seconds.

  • PDF

A Study for Stable End Point Detection in 90 nm WSix/poly-Si Stack-down Gate Etching Process (90 nm급 텅스텐 폴리사이드 게이트 식각공정에서 식각종말점의 안정화에 관한 연구)

  • Ko, Yong-Deuk;Chun, Hui-Gon;Lee, Jing-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.3
    • /
    • pp.206-211
    • /
    • 2005
  • The device makers want to make higher density chips on the wafer through scale-down. The change of WSix/poly-Si gate film thickness is one of the key issues under 100 nm device structure. As a new device etching process is applied, end point detection(EPD) time delay was occurred in DPS+ poly chamber of Applied Materials. This is a barrier of device shrink because EPD time delay made physical damage on the surface of gate oxide. To investigate the EPD time delay, the experimental test combined with OES(Optical Emission Spectroscopy) and SEM(Scanning Electron Microscopy) was performed using patterned wafers. As a result, a EPD delay time is reduced by a new chamber seasoning and a new wavelength line through plasma scan. Applying a new wavelength of 252 nm makes it successful to call corrected EPD in WSix/poly-Si stack-down gate etching in the DPS+ poly chamber for the current and next generation devices.

A 60 GHz Bidirectional Active Phase Shifter with 130 nm CMOS Common Gate Amplifier (130 nm CMOS 공통 게이트 증폭기를 이용한 60 GHz 양방향 능동 위상변화기)

  • Hyun, Ju-Young;Lee, Kook-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1111-1116
    • /
    • 2011
  • In this paper, a 60 GHz bidirectional active phase shifter with 130 nm CMOS is presented by replacing CMOS passive switchs in switched-line type phase shifter with Common Gate Amplifier(bidirectional amplifier). Bidirectional active phase shifter is composed of bidirectional amplifier blocks and passive delay line network blocks. The suitable topology of bidirectional amplifier block is CGA(Common Gate Amplifier) topology and matching circuits of input and output are symmetrical due to design same characteristic of it's forward and reverse way. The direction(forward and reverse way) and amplitude of amplification can be controlled by only one bias voltage($V_{DS}$) using combination bias circuit. And passive delay line network blocks are composed of microstrip line. An 1-bit phase shifter is fabricated by Dongbu HiTek 1P8M 130-nm CMOS technology and simulation results present -3 dB average insertion loss and respectively 90 degree and 180 degree phase shift at 60 GHz.

Decrease of Parasitic Capacitance for Improvement of RF Performance of Multi-finger MOSFETs in 90-nm CMOS Technology

  • Jang, Seong-Yong;Kwon, Sung-Kyu;Shin, Jong-Kwan;Yu, Jae-Nam;Oh, Sun-Ho;Jeong, Jin-Woong;Song, Hyeong-Sub;Kim, Choul-Young;Lee, Ga-Won;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.2
    • /
    • pp.312-317
    • /
    • 2015
  • In this paper, the RF characteristics of multi-finger MOSFETs were improved by decreasing the parasitic capacitance in spite of increased gate resistance in a 90-nm CMOS technology. Two types of device structures were designed to compare the parasitic capacitance in the gate-to-source ($C_{gs}$) and gate-to-drain ($C_{gd}$) configurations. The radio frequency (RF) performance of multi-finger MOSFETs, such as cut-off frequency ($f_T$) and maximum-oscillation frequency ($f_{max}$) improved by approximately 10% by reducing the parasitic capacitance about 8.2% while maintaining the DC performance.

Beyond-CMOS: Impact of Side-Recess Spacing on the Logic Performance of 50 nm $In_{0.7}Ga_{0.3}As$ HEMTs

  • Kim, Dae-Hyun;del Alamo, Jesus A.;Lee, Jae-Hak;Seo, Kwang-Seok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.3
    • /
    • pp.146-153
    • /
    • 2006
  • We have been investigating InGaAs HEMTs as a future high-speed and low-power logic technology for beyond CMOS applications. In this work, we have experimentally studied the role of the side-recess spacing $(L_{side})$ on the logic performance of 50 nm $In_{0.7}Ga_{0.3}As$ As HEMTs. We have found that $L_{side}$ has a large influence on the electrostatic integrity (or short channel effects), gate leakage current, gate-drain capacitance, and source and drain resistance of the device. For our device design, an optimum value of $L_{side}$ of 150 nm is found. 50 nm $In_{0.7}Ga_{0.3}As$ HEMTs with this value of $L_{side}$ exhibit $I_{ON}/I_{OFF}$ ratios in excess of $10^4$, subthreshold slopes smaller than 90 mV/dec, and logic gate delays of about 1.3 ps at a $V_{CC}$ of 0.5 V. In spite of the fact that these devices are not optimized for logic, these values are comparable to state-of-the-art MOSFETs with similar gate lengths. Our work confirms that in the landscape of alternatives for beyond CMOS technologies, InAs-rich InGaAs FETs hold considerable promise.

The Effects of Nanocrystalline Silicon Thin Film Thickness on Top Gate Nanocrystalline Silicon Thin Film Transistor Fabricated at 180℃

  • Kang, Dong-Won;Park, Joong-Hyun;Han, Sang-Myeon;Han, Min-Koo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.2
    • /
    • pp.111-114
    • /
    • 2008
  • We studied the influence of nanocrystalline silicon (nc-Si) thin film thickness on top gate nc-Si thin film transistor (TFT) fabricated at $180^{\circ}C$. The nc-Si thickness affects the characteristics of nc-Si TFT due to the nc-Si growth similar to a columnar. As the thickness of nc-Si increases from 40 nm to 200 nm, the grain size was increased from 20 nm to 40 nm. Having a large grain size, the thick nc-Si TFT surpasses the thin nc-Si TFT in terms of electrical characteristics such as field effect mobility. The channel resistance was decreased due to growth of the grain. We obtained the experimental results that the field effect mobility of the fabricated devices of which nc-Si thickness is 60, 90 and 130 nm are 26, 77 and $119\;cm^2/Vsec$, respectively. The leakage current, however, is increased from $7.2{\times}10^{-10}$ to $1.9{\times}10^{-8}\;A$ at $V_{GS}=-4.4\;V$ when the nc-Si thickness increases. It is originated from the decrease of the channel resistance.

The transition of dominant noise source for different CMOS process with Cgd consideration (Cgd 성분을 포함한 공정별 주요 잡음원 천이 과정 연구)

  • Koo, Minsuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.5
    • /
    • pp.682-685
    • /
    • 2020
  • In this paper, we analyze the dominant noise source of conventional inductively degenerated common-source (CS) cascode low noise amplifier (LNA) when width and gate length of stacked transistors vary. Analytical MOSFET and its noise model are used to estimate the contributions of noise sources. All parameters are based on measured data of 60nm, 90nm and 130nm CMOS devices. Based on the noise analysis for different frequencies and device parameters including process nodes, the dominant noise source can be analyzed to optimize noise figure on the configuration. We verified analytically that the intuctively degenerated CS topology can not sustain its benefits in noise above a certain operation frequency of LNA over different process nodes.

Sub-90nm 급 Logic 소자에 대한 기생 저항 성분 추출의 연구

  • 이준하;이흥주;이주율
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2003.05a
    • /
    • pp.112-115
    • /
    • 2003
  • Sub-90nm급 high speed 소자를 위해서는 extension영역의 shallow junction과 sheet 저항의 감소가 필수적이다. 일반적으로 기생저항은 channel저항의 약 10-20%정도를 차지하도록 제작되므로, 이를 최소화하여 optimize하기 위해서는 기생저항에 대한 성분 분리와 이들이 가지는 저항값에 대한 정량적 계산이 이루어져야 한다. 이에 본 논문은 calibration된 TCAD simulation을 통해 90nm급 Tr. 에서 각 영역의 저항성분을 계산, 평가하는 방법을 제시한다. 이 결과, 특히, extension영역의 표면-accumulation부분이 가장 개선이 있어야 할 부분으로 분석되었으며, 이 저항은 gate하부에 존재하는 extension으로부터 발if되는 측면 doping의 tail영역으로 인해 형성되는 것으로,doping의 abruptness가 가장 중요한 factor인 것으로 판단된다.

  • PDF

Low-Power $32bit\times32bit$ Multiplier Design for Deep Submicron Technologies beyond 130nm (130nm 이하의 초미세 공정을 위한 저전력 32비트$\times$32비트 곱셈기 설계)

  • Jang Yong-Ju;Lee Seong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.6 s.348
    • /
    • pp.47-52
    • /
    • 2006
  • This paper proposes a novel low-power $32bit\times32bit$ multiplier for deep submicron technologies beyond 130nm. As technology becomes small, static power due to leakage current significantly increases, and it becomes comparable to dynamic power. Recently, shutdown method based on MTCMOS is widely used to reduce both dynamic and static power. However, it suffers from severe power line noise when restoring whole large-size functional block. Therefore, the proposed multiplier mitigates this noise by shutting down and waking up sequentially along with pipeline stage. Fabricated chip measurement results in $0.35{\mu}m$ technology and gate-transition-level simulation results in 130nm and 90nm technologies show that it consumes $66{\mu}W,\;13{\mu}W,\;and\;6{\mu}W$ in idle mode, respectively, and it reduces power consumption to $0.04%\sim0.08%$ of active mode. As technology becomes small, power reduction efficiency degrades in the conventional clock gating scheme, but the proposed multiplier does not.